diff --git a/R/plots.R b/R/plots.R index 4aa0a18..ae824ba 100644 --- a/R/plots.R +++ b/R/plots.R @@ -128,7 +128,7 @@ vis.number.count <- function (.data, .ncol = 3, .name = 'Histogram of clonotypes } ggplot() + - xlim(min(.data$Read.count), 300) + + xlim(min(.data$Read.count), 300) + ylab('Number of clonotypes') + geom_histogram(aes(x = Read.count, fill = ..count..), data = .data, binwidth = 1, colour = 'black') + coord_trans(xtrans = 'log10') + scale_y_log10() + diff --git a/vignettes/tcrvignette.Rnw b/vignettes/tcrvignette.Rnw index 118b926..039ca69 100644 --- a/vignettes/tcrvignette.Rnw +++ b/vignettes/tcrvignette.Rnw @@ -432,7 +432,12 @@ The package implements rich data visualisation procedures. All of them are descr \subsection{CDR3 length and read count distributions} Plots of the distribution of CDR3 nucleotide sequences length (function \code{vis.count.len}) and the histogram of "Read.count" number (function \code{vis.number.count}). Input data is either a data frame or a list with data frames. -<>= +%<>= +%p1 <- vis.count.len(twb[[1]]) +%p2 <- vis.number.count(twb[[1]]) +%grid.arrange(p1, p2, ncol = 2) +%@ +<>= p1 <- vis.count.len(twb[[1]]) p2 <- vis.number.count(twb[[1]]) grid.arrange(p1, p2, ncol = 2)