-
Notifications
You must be signed in to change notification settings - Fork 0
/
Check_Bipartite-Graph_using_coloring.cpp
105 lines (89 loc) · 2.4 KB
/
Check_Bipartite-Graph_using_coloring.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#include <bits/stdc++.h>
using namespace std;
class Graph
{
int V;
vector<int> *graph;
public:
bool Bipartite = true;
Graph(int V)
{
this->V = V;
graph = new vector<int>[V];
}
void addEdge(int u, int v)
{
graph[u].push_back(v);
graph[v].push_back(u);
}
int check_available(bool available[])
{
int i;
for (i = 0; i < V; i++)
{
// it resembles that the current color i.e. "i" is available.
if (available[i] == false)
{
// if i is greater than 2, it means we have used more than 2 colors (besides 0 and 1).
if (i > 1)
Bipartite = false;
break;
}
}
return i;
}
void color(int v)
{
int chromaticNumber = 0;
// colors will store color of each node.
// available will check available colors for each node.
int color[v];
for (int i = 0; i < v; i++)
color[i] = -1;
bool available[v];
for (int i = 0; i < v; i++)
available[i] = false;
// initially the color of first vertex i.e. "0" is 0.
color[0] = 0;
// Iterating each vertex.
for (int i = 1; i < V; i++)
{
for (auto x : graph[i])
{
// if adjacent vertex is already colored.
if (color[x] != -1)
{
available[color[x]] = true;
}
}
// color available for the current vertex after checking all adjacent vertices.
int colorAvailabe = check_available(available);
color[i] = colorAvailabe;
// updating the chromatic number.
chromaticNumber = max(chromaticNumber, colorAvailabe + 1);
// finally reseting the availabe array after current vertex's iteration.
for (auto x : graph[i])
{
if (color[x] != -1)
available[color[x]] = false;
}
}
}
};
int main()
{
int V = 5;
Graph g(V);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(0, 4);
g.addEdge(1, 3);
g.addEdge(2, 4);
g.addEdge(3, 2);
g.color(V);
if (!g.Bipartite)
cout << "Graph is not Bipartite" << endl;
else
cout << "Graph is Bipartite!" << endl;
return 0;
}