-
Notifications
You must be signed in to change notification settings - Fork 4
/
punjab_mpi.py
549 lines (377 loc) · 16.8 KB
/
punjab_mpi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
#!/usr/bin/env python
# coding: utf-8
import traceback
sys.path.append('../')
import os
import pdf2image
from PIL import Image
import pytesseract
import difflib
import re
import pandas as pd
import sys
from helper import *
import argparse
import multiprocessing
import time
from datetime import datetime
import shutil
from tempfile import mkstemp
from mpi4py.futures import MPIPoolExecutor
if False:
script_description = """ punjab parsing """
parser = argparse.ArgumentParser(description=script_description,
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("data_path", help="data path of the states with append /")
parser.add_argument("state_name", help="the exact state name of data with /")
cli_args = parser.parse_args()
DATA_PATH = cli_args.data_path
STATE = cli_args.state_name
DATA_PATH = '/share/svasudevan2lab/parse_in_rolls/data/'
STATE = 'punjab/'
PARSE_DATA_PAGES = "/share/svasudevan2lab/parse_in_rolls/parseData/images/"+STATE
create_path(PARSE_DATA_PAGES)
PARSE_DATA_BLOCKS = "/share/svasudevan2lab/parse_in_rolls/parseData/blocks/"+STATE
create_path(PARSE_DATA_BLOCKS)
PARSE_DATA_CSVS = "/share/svasudevan2lab/parse_in_rolls/parseData/csvs/"+STATE
create_path(PARSE_DATA_CSVS)
COLUMNS = ["number","id", "elector_name", "father_or_husband_name", "relationship", "house_no", "age", "sex", "ac_name", "parl_constituency", "part_no", "year", "state", "filename", "main_town", "police_station", "mandal", "revenue_division", "district", "pin_code", "polling_station_name", "polling_station_address", "net_electors_male", "net_electors_female", "net_electors_third_gender", "net_electors_total"]
state_pdfs_path = DATA_PATH+STATE
state_pdfs_files = os.listdir(state_pdfs_path)
sort_nicely(state_pdfs_files)
def extract_4_numbers(crop_stat_path):
text = (pytesseract.image_to_string(crop_stat_path, config='--psm 11', lang='eng')) #config='--psm 4' config='-c preserve_interword_spaces=1'
text = re.findall(r'\d+', text)
if len(text)==4:
if int(text[0]) + int(text[1]) == int(text[2]):
net_electors_male,net_electors_female,net_electors_third_gender,net_electors_total = text[0],text[1],"0",text[2]
elif int(text[0]) + int(text[1]) == int(text[3]):
net_electors_male,net_electors_female,net_electors_third_gender,net_electors_total = text[0],text[1],"0",text[3]
else:
net_electors_male,net_electors_female,net_electors_third_gender,net_electors_total = text[0],text[1],text[2],text[3]
elif len(text) == 3 and int(text[2])>=int(text[1]) and int(text[2])>=int(text[0]):
net_electors_male,net_electors_female,net_electors_third_gender,net_electors_total = text[0],text[1],"0",text[2]
elif len(text) == 2 and int(text[0])*2-100<int(text[1]):
net_electors_male,net_electors_female,net_electors_third_gender,net_electors_total = text[0],int(text[1])-int(text[0]),"0",text[1]
else:
net_electors_male,net_electors_female,net_electors_third_gender,net_electors_total = "","","",""
return net_electors_male,net_electors_female,net_electors_third_gender,net_electors_total
def split_data(data, seps):
for s in seps:
if s in data:
break
data = data.split(s)
if len(data)>1:
data = data[-1].strip()
return data
else:
data = ""
return data
def extract_first_page_details(path):
img = Image.open(path)
crop_path = input_images_blocks_path+"page/"
create_path(crop_path)
a,b,c,d = 3196,314,600,191 # part no
crop_img = crop_section(a,b,c,d,img)
crop_part_path = crop_path+"part.jpg"
crop_img.save(crop_part_path)
crop_img.close()
text = (pytesseract.image_to_string(crop_part_path, config='--psm 6', lang='eng+pan')) #config='--psm 4' config='-c preserve_interword_spaces=1'
text = re.findall(r'\d+', text)
if len(text)>0:
part_no = text[0]
else:
part_no = ""
a,b,c,d = 1740,5114,2063,142 # stats for male and female
crop_img = crop_section(a,b,c,d,img)
crop_path = input_images_blocks_path+"page/"
create_path(crop_path)
crop_stat_path = crop_path+"stat.jpg"
crop_img.save(crop_stat_path)
crop_img.close()
a_n,b_n,c_n,d_n = extract_4_numbers(crop_stat_path)
a,b,c,d = 2873,2615,1011,1264 # mandal block
crop_img = crop_section(a,b,c,d,img)
crop_det_path = crop_path+"det.jpg"
crop_img.save(crop_det_path)
crop_img.close()
text = (pytesseract.image_to_string(crop_det_path, config='--psm 6', lang='pan')) #config='--psm 4' config='-c preserve_interword_spaces=1'
text = text.split('\n')
text = [ i for i in text if i!='' and i!='\x0c']
main_town,revenue_division,police_station,mandal,district,pin_code = "","","","","",""
if len(text) == 8:
main_town = text[0]
revenue_division = text[2]
police_station = text[3]
mandal = text[5]
district = text[6]
pin_code =text[7]
elif len(text) == 9:
main_town = text[0]
revenue_division = text[3]
police_station = text[4]
mandal = text[6]
district = text[7]
pin_code =text[8]
elif len(text) == 7:
main_town = text[0]
revenue_division = text[2]
police_station = text[3]
mandal = text[4]
district = text[5]
pin_code =text[6]
elif len(text) == 6:
main_town = text[0]
revenue_division = ""
police_station = text[2]
mandal = text[3]
district = text[4]
pin_code =text[5]
a,b,c,d = 192,4100,2208,418 # police name name and address
crop_img = crop_section(a,b,c,d,img)
crop_police_path = crop_path+"police.jpg"
crop_img.save(crop_police_path)
crop_img.close()
text = (pytesseract.image_to_string(crop_police_path, config='--psm 6', lang='pan')) #config='--psm 4' config='-c preserve_interword_spaces=1'
text = text.split('\n')
text = [ i for i in text if i!='' and i!='\x0c']
polling_station_name, polling_station_address = "",""
seps = [":","ਪਤਾ “","ਪਤਾ"]
if len(text) == 2:
polling_station_name, polling_station_address = split_data(text[0],[":"]),split_data(text[1],seps)
elif len(text)>=3:
polling_station_name, polling_station_address = split_data(text[0],[":"]),split_data(text[1],seps)
a,b,c,d = 172,321,2900,519 # ac name and parl
crop_img = crop_section(a,b,c,d,img)
crop_ac_path = crop_path+"ac.jpg"
crop_img.save(crop_ac_path)
crop_img.close()
text = (pytesseract.image_to_string(crop_ac_path, config='--psm 6', lang='pan')) #config='--psm 4' config='-c preserve_interword_spaces=1'
text = text.split('\n')
text = [ i for i in text if i!='' and i!='\x0c']
ac_name, parl_constituency = "",""
seps = [":",";","ਸਥਿਤੀ","ਮਾ", 'ਰੀ']
if len(text) == 4:
ac_name = split_data(text[1],seps)
parl_constituency = text[2].split("ਹੈ,")
if len(parl_constituency)>1:
parl_constituency = parl_constituency[1].strip()
elif len(text) == 5:
ac_name = split_data(text[1],seps)
parl_constituency = text[3].strip()
elif len(text) == 2:
parl_constituency = text[0].split("ਹੈ,")
if len(parl_constituency)>1:
parl_constituency = parl_constituency[1].strip()
return [ac_name,parl_constituency,part_no,main_town,police_station,polling_station_name,polling_station_address,revenue_division,mandal,district,pin_code,a_n,b_n,c_n,d_n]
def arrange_columns(first_page_list,block_list,filename):
year = 2018
state = 'Punjab'
ac_name,parl_constituency,part_no,main_town,police_station,polling_station_name,polling_station_address,revenue_division,mandal,district,pin_code,net_electors_male,net_electors_female,net_electors_third_gender,net_electors_total = first_page_list
name,rel_name,rel_type,house_no,age,gender,voter_id,number = block_list
final_list = [number,voter_id,name,rel_name,rel_type,house_no,age,gender,ac_name,
parl_constituency,part_no,year,state,filename,main_town,police_station,mandal,
revenue_division,district,pin_code,polling_station_name,polling_station_address,
net_electors_male,net_electors_female,net_electors_third_gender,net_electors_total]
return final_list
def generate_poll_blocks_from_page(page_full_path,page_blocks_path,amend_page):
img = Image.open(page_full_path)
amend = False
def generate(intial_width,a,b,gap):
count = 0
crop_width = 1290
crop_height = 495
for col in range(1,11):
for row in range(1,4):
c = a+crop_width
d = b+crop_height
area = (a, b, c, d)
cropped_img = img.crop(area)
count = count+1
new_area = (900,100, 1300, 470)
region = Image.new("RGB", (400, 370), (255, 255, 255))
cropped_img.paste(region,new_area)
cropped_img.save(page_blocks_path+str(count)+".jpg")
cropped_img.close()
a = c
a = intial_width
b = b+crop_height+gap
page_type,intial_height = check_page_type(img,amend_page)
if page_type == 1:
intial_width = 130
generate(intial_width,intial_width,intial_height,6)
amend_page = False
return amend_page
def check_page_type(img,amend_page):
return 1,393
def extract_name(name):
seps = [":","!","-","ਨਾਮ"]
name = split_data(name,seps)
return name
def extract_vid(v_id):
seps = ["|", "_","~","=","-","}"]
for s in seps:
v_id = v_id.replace(s,"")
row = v_id.split(" ")
if len(row) == 1:
return "",row[0]
elif len(row)==2:
number = re.findall(r'\d+', row[0].strip())
if len(number)>0:
return number[0],row[1]
else:
return "",row[1]
elif len(row)>2:
number = re.findall(r'\d+', row[0].strip())
if len(number)>0:
return number[0],row[1]+" "+row[2]
else:
return "",row[1]+" "+row[2]
else:
return "",v_id
def extract_house_no(house_no):
seps = [":","ਮਕਾਨਨੰ.","ਮਕਾਨਨੰ","."]
house_no = split_data(house_no,seps)
if house_no == "":
house_no = re.findall(r'\d+', house_no)
if len(house_no)>0:
return house_no[0]
else:
return ""
return house_no
def extract_age_gender(age_gender):
age = re.findall(r'\d+', age_gender)
if len(age)>0:
age = age[0]
else:
age = ""
if age == "":
row = age_gender.split(":")
if len(row)>1:
row = row[1]
age = re.findall(r'\d+', row)
if len(age)>0:
age = age[0]
else:
age = ""
if "ਪੁਰਸ਼" in age_gender:
gender = "Male"
elif "ਇਸਤਰੀ" in age_gender:
gender = "Female"
else:
gender = "Male"
return age, gender
def extract_rel_name(rel_name):
seps = [":","-","ਪਿਤਾ","ਪਤੀ"]
name = split_data(rel_name, seps)
rel_type = extract_rel_type(rel_name)
return name,rel_type
def extract_rel_type(rel_type):
if "ਪਿਤਾ" in rel_type:
rel_type = 'father'
elif "ਪਤੀ" in rel_type:
rel_type = 'husband'
else:
rel_type = "father"
return rel_type
def extract_details_from_block(block):
v_id = block[0]
name = block[1]
rel_name = block[2]
house_no = block[3]
age_gender = block[4]
name = extract_name(name)
rel_name,rel_type = extract_rel_name(rel_name)
house_no = extract_house_no(house_no)
age, gender = extract_age_gender(age_gender)
number,voter_id = extract_vid(v_id)
return [name,rel_name,rel_type,house_no,age,gender,voter_id,number]
def run_tesseract(path):
text = (pytesseract.image_to_string(path, config='--psm 6', lang='pan'))
params_list = text.split('\n')
new_params_list = [ i for i in params_list if i!='' and i!='\x0c']
return new_params_list
def pdf_process(pdf_file_name):
begin_time = time.time()
print(pdf_file_name, datetime.now().strftime('%Y/%m/%d %H:%M:%S'))
if not pdf_file_name.endswith(".pdf"):
return pdf_file_name, 0
try:
#create images,blocks and csvs paths for each file
pdf_file_name_without_ext = pdf_file_name.split('.pdf')[0]
input_pdf_images_path = PARSE_DATA_PAGES+pdf_file_name_without_ext+"/"
create_path(input_pdf_images_path)
input_images_blocks_path = PARSE_DATA_BLOCKS+pdf_file_name_without_ext+"/"
create_path(input_images_blocks_path)
if os.path.exists(PARSE_DATA_CSVS+pdf_file_name_without_ext+".csv"):
print(pdf_file_name_without_ext+".csv", "already exists")
continue
#convert pdf into bunch of images
pdf_2_images_list = pdf_to_img(state_pdfs_path+pdf_file_name, input_pdf_images_path,dpi=500)
#sort pages for looping
input_images = os.listdir(input_pdf_images_path)
sort_nicely(input_images)
#empty intial data
df = pd.DataFrame(columns = COLUMNS)
order_problem = []
amend_page = False
#for each page, parse the data
for page in input_images:
page_full_path = input_pdf_images_path+page
#extract first page content
if page == '1.jpg':
first_page_list = extract_first_page_details(page_full_path)
continue
#ingnore 2nd page and last page
if page == '2.jpg' or input_images[-1] == page:
continue
#loop from 3 page onwards
if page.endswith('.jpg'):
final_invidual_blocks = []
blocks_path = input_images_blocks_path+"blocks/"
create_path(blocks_path)
page_idx = page.split(".jpg")[0] + "/"
page_blocks_path = blocks_path+page_idx
create_path(page_blocks_path)
generate_poll_blocks_from_page(page_full_path,page_blocks_path,amend_page)
sorted_blocks = os.listdir(page_blocks_path)
sort_nicely(sorted_blocks)
for jpg_file in sorted_blocks:
if jpg_file.endswith('.jpg') :
new_params_list = run_tesseract(page_blocks_path+jpg_file)
if len(new_params_list)==5:
final_invidual_blocks.append(new_params_list)
else:
order_problem.append((page, jpg_file,new_params_list))
#put the data into dataframe
for block in final_invidual_blocks:
block_list = extract_details_from_block(block)
final_list = arrange_columns(first_page_list,block_list,pdf_file_name_without_ext)
df_length = len(df)
df.loc[df_length] = final_list
print("page done", page)
#save the dataframe(pdf) data into csv
save_to_csv(df,PARSE_DATA_CSVS+pdf_file_name_without_ext+".csv")
print("CSV saved",pdf_file_name_without_ext)
except Exception as e:
print('ERROR:', e, pdf_file_name_without_ext)
traceback.print_exc()
finally:
print("Clean up working files...")
shutil.rmtree(input_pdf_images_path, ignore_errors=True)
shutil.rmtree(input_images_blocks_path, ignore_errors=True)
end_time = time.time()
return pdf_file_name_without_ext, end_time - begin_time
if __name__ == '__main__':
print('Tesseract Version:', pytesseract.get_tesseract_version())
print('multiprocessing cpu_count:', multiprocessing.cpu_count())
print('os cpu_count:', os.cpu_count())
print('sched_getaffinity:', len(os.sched_getaffinity(0)))
#a_pool = multiprocessing.Pool(multiprocessing.cpu_count())
#results = a_pool.map(pdf_process, state_pdfs_files)
with MPIPoolExecutor() as executor:
results = executor.map(pdf_process, state_pdfs_files)
for res in results:
print(res)
#combine all state files into one csv
#combine_all_csvs("punjab_final.csv",PARSE_DATA_CSVS)