forked from ethanfetaya/NRI
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
404 lines (341 loc) · 15.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
from __future__ import division
from __future__ import print_function
import time
import argparse
import pickle
import os
import datetime
import torch.optim as optim
from torch.optim import lr_scheduler
from utils import *
from modules import *
parser = argparse.ArgumentParser()
parser.add_argument('--no-cuda', action='store_true', default=False,
help='Disables CUDA training.')
parser.add_argument('--seed', type=int, default=42, help='Random seed.')
parser.add_argument('--epochs', type=int, default=500,
help='Number of epochs to train.')
parser.add_argument('--batch-size', type=int, default=128,
help='Number of samples per batch.')
parser.add_argument('--lr', type=float, default=0.0005,
help='Initial learning rate.')
parser.add_argument('--encoder-hidden', type=int, default=256,
help='Number of hidden units.')
parser.add_argument('--decoder-hidden', type=int, default=256,
help='Number of hidden units.')
parser.add_argument('--temp', type=float, default=0.5,
help='Temperature for Gumbel softmax.')
parser.add_argument('--num-atoms', type=int, default=5,
help='Number of atoms in simulation.')
parser.add_argument('--encoder', type=str, default='mlp',
help='Type of path encoder model (mlp or cnn).')
parser.add_argument('--decoder', type=str, default='mlp',
help='Type of decoder model (mlp, rnn, or sim).')
parser.add_argument('--no-factor', action='store_true', default=False,
help='Disables factor graph model.')
parser.add_argument('--suffix', type=str, default='_springs5',
help='Suffix for training data (e.g. "_charged".')
parser.add_argument('--encoder-dropout', type=float, default=0.0,
help='Dropout rate (1 - keep probability).')
parser.add_argument('--decoder-dropout', type=float, default=0.0,
help='Dropout rate (1 - keep probability).')
parser.add_argument('--save-folder', type=str, default='logs',
help='Where to save the trained model, leave empty to not save anything.')
parser.add_argument('--load-folder', type=str, default='',
help='Where to load the trained model if finetunning. ' +
'Leave empty to train from scratch')
parser.add_argument('--edge-types', type=int, default=2,
help='The number of edge types to infer.')
parser.add_argument('--dims', type=int, default=4,
help='The number of input dimensions (position + velocity).')
parser.add_argument('--timesteps', type=int, default=49,
help='The number of time steps per sample.')
parser.add_argument('--prediction-steps', type=int, default=10, metavar='N',
help='Num steps to predict before re-using teacher forcing.')
parser.add_argument('--lr-decay', type=int, default=200,
help='After how epochs to decay LR by a factor of gamma.')
parser.add_argument('--gamma', type=float, default=0.5,
help='LR decay factor.')
parser.add_argument('--skip-first', action='store_true', default=False,
help='Skip first edge type in decoder, i.e. it represents no-edge.')
parser.add_argument('--var', type=float, default=5e-5,
help='Output variance.')
parser.add_argument('--hard', action='store_true', default=False,
help='Uses discrete samples in training forward pass.')
parser.add_argument('--prior', action='store_true', default=False,
help='Whether to use sparsity prior.')
parser.add_argument('--dynamic-graph', action='store_true', default=False,
help='Whether test with dynamically re-computed graph.')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
args.factor = not args.no_factor
print(args)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
if args.dynamic_graph:
print("Testing with dynamically re-computed graph.")
# Save model and meta-data. Always saves in a new sub-folder.
if args.save_folder:
exp_counter = 0
now = datetime.datetime.now()
timestamp = now.isoformat()
save_folder = '{}/exp{}/'.format(args.save_folder, timestamp)
os.mkdir(save_folder)
meta_file = os.path.join(save_folder, 'metadata.pkl')
encoder_file = os.path.join(save_folder, 'encoder.pt')
decoder_file = os.path.join(save_folder, 'decoder.pt')
log_file = os.path.join(save_folder, 'log.txt')
log = open(log_file, 'w')
pickle.dump({'args': args}, open(meta_file, "wb"))
else:
print("WARNING: No save_folder provided!" +
"Testing (within this script) will throw an error.")
train_loader, valid_loader, test_loader, loc_max, loc_min, vel_max, vel_min = load_data(
args.batch_size, args.suffix)
# Generate off-diagonal interaction graph
off_diag = np.ones([args.num_atoms, args.num_atoms]) - np.eye(args.num_atoms)
rel_rec = np.array(encode_onehot(np.where(off_diag)[0]), dtype=np.float32)
rel_send = np.array(encode_onehot(np.where(off_diag)[1]), dtype=np.float32)
rel_rec = torch.FloatTensor(rel_rec)
rel_send = torch.FloatTensor(rel_send)
if args.encoder == 'mlp':
encoder = MLPEncoder(args.timesteps * args.dims, args.encoder_hidden,
args.edge_types,
args.encoder_dropout, args.factor)
elif args.encoder == 'cnn':
encoder = CNNEncoder(args.dims, args.encoder_hidden,
args.edge_types,
args.encoder_dropout, args.factor)
if args.decoder == 'mlp':
decoder = MLPDecoder(n_in_node=args.dims,
edge_types=args.edge_types,
msg_hid=args.decoder_hidden,
msg_out=args.decoder_hidden,
n_hid=args.decoder_hidden,
do_prob=args.decoder_dropout,
skip_first=args.skip_first)
elif args.decoder == 'rnn':
decoder = RNNDecoder(n_in_node=args.dims,
edge_types=args.edge_types,
n_hid=args.decoder_hidden,
do_prob=args.decoder_dropout,
skip_first=args.skip_first)
elif args.decoder == 'sim':
decoder = SimulationDecoder(loc_max, loc_min, vel_max, vel_min, args.suffix)
if args.load_folder:
encoder_file = os.path.join(args.load_folder, 'encoder.pt')
encoder.load_state_dict(torch.load(encoder_file))
decoder_file = os.path.join(args.load_folder, 'decoder.pt')
decoder.load_state_dict(torch.load(decoder_file))
args.save_folder = False
optimizer = optim.Adam(list(encoder.parameters()) + list(decoder.parameters()),
lr=args.lr)
scheduler = lr_scheduler.StepLR(optimizer, step_size=args.lr_decay,
gamma=args.gamma)
# Linear indices of an upper triangular mx, used for acc calculation
triu_indices = get_triu_offdiag_indices(args.num_atoms)
tril_indices = get_tril_offdiag_indices(args.num_atoms)
if args.prior:
prior = np.array([0.91, 0.03, 0.03, 0.03]) # TODO: hard coded for now
print("Using prior")
print(prior)
log_prior = torch.FloatTensor(np.log(prior))
log_prior = torch.unsqueeze(log_prior, 0)
log_prior = torch.unsqueeze(log_prior, 0)
log_prior = Variable(log_prior)
if args.cuda:
log_prior = log_prior.cuda()
if args.cuda:
encoder.cuda()
decoder.cuda()
rel_rec = rel_rec.cuda()
rel_send = rel_send.cuda()
triu_indices = triu_indices.cuda()
tril_indices = tril_indices.cuda()
rel_rec = Variable(rel_rec)
rel_send = Variable(rel_send)
def train(epoch, best_val_loss):
t = time.time()
nll_train = []
acc_train = []
kl_train = []
mse_train = []
encoder.train()
decoder.train()
scheduler.step()
for batch_idx, (data, relations) in enumerate(train_loader):
if args.cuda:
data, relations = data.cuda(), relations.cuda()
data, relations = Variable(data), Variable(relations)
optimizer.zero_grad()
logits = encoder(data, rel_rec, rel_send)
edges = gumbel_softmax(logits, tau=args.temp, hard=args.hard)
prob = my_softmax(logits, -1)
if args.decoder == 'rnn':
output = decoder(data, edges, rel_rec, rel_send, 100,
burn_in=True,
burn_in_steps=args.timesteps - args.prediction_steps)
else:
output = decoder(data, edges, rel_rec, rel_send,
args.prediction_steps)
target = data[:, :, 1:, :]
loss_nll = nll_gaussian(output, target, args.var)
if args.prior:
loss_kl = kl_categorical(prob, log_prior, args.num_atoms)
else:
loss_kl = kl_categorical_uniform(prob, args.num_atoms,
args.edge_types)
loss = loss_nll + loss_kl
acc = edge_accuracy(logits, relations)
acc_train.append(acc)
loss.backward()
optimizer.step()
mse_train.append(F.mse_loss(output, target).data[0])
nll_train.append(loss_nll.data[0])
kl_train.append(loss_kl.data[0])
nll_val = []
acc_val = []
kl_val = []
mse_val = []
encoder.eval()
decoder.eval()
for batch_idx, (data, relations) in enumerate(valid_loader):
if args.cuda:
data, relations = data.cuda(), relations.cuda()
data, relations = Variable(data, volatile=True), Variable(
relations, volatile=True)
logits = encoder(data, rel_rec, rel_send)
edges = gumbel_softmax(logits, tau=args.temp, hard=True)
prob = my_softmax(logits, -1)
# validation output uses teacher forcing
output = decoder(data, edges, rel_rec, rel_send, 1)
target = data[:, :, 1:, :]
loss_nll = nll_gaussian(output, target, args.var)
loss_kl = kl_categorical_uniform(prob, args.num_atoms, args.edge_types)
acc = edge_accuracy(logits, relations)
acc_val.append(acc)
mse_val.append(F.mse_loss(output, target).data[0])
nll_val.append(loss_nll.data[0])
kl_val.append(loss_kl.data[0])
print('Epoch: {:04d}'.format(epoch),
'nll_train: {:.10f}'.format(np.mean(nll_train)),
'kl_train: {:.10f}'.format(np.mean(kl_train)),
'mse_train: {:.10f}'.format(np.mean(mse_train)),
'acc_train: {:.10f}'.format(np.mean(acc_train)),
'nll_val: {:.10f}'.format(np.mean(nll_val)),
'kl_val: {:.10f}'.format(np.mean(kl_val)),
'mse_val: {:.10f}'.format(np.mean(mse_val)),
'acc_val: {:.10f}'.format(np.mean(acc_val)),
'time: {:.4f}s'.format(time.time() - t))
if args.save_folder and np.mean(nll_val) < best_val_loss:
torch.save(encoder.state_dict(), encoder_file)
torch.save(decoder.state_dict(), decoder_file)
print('Best model so far, saving...')
print('Epoch: {:04d}'.format(epoch),
'nll_train: {:.10f}'.format(np.mean(nll_train)),
'kl_train: {:.10f}'.format(np.mean(kl_train)),
'mse_train: {:.10f}'.format(np.mean(mse_train)),
'acc_train: {:.10f}'.format(np.mean(acc_train)),
'nll_val: {:.10f}'.format(np.mean(nll_val)),
'kl_val: {:.10f}'.format(np.mean(kl_val)),
'mse_val: {:.10f}'.format(np.mean(mse_val)),
'acc_val: {:.10f}'.format(np.mean(acc_val)),
'time: {:.4f}s'.format(time.time() - t), file=log)
log.flush()
return np.mean(nll_val)
def test():
acc_test = []
nll_test = []
kl_test = []
mse_test = []
tot_mse = 0
counter = 0
encoder.eval()
decoder.eval()
encoder.load_state_dict(torch.load(encoder_file))
decoder.load_state_dict(torch.load(decoder_file))
for batch_idx, (data, relations) in enumerate(test_loader):
if args.cuda:
data, relations = data.cuda(), relations.cuda()
data, relations = Variable(data, volatile=True), Variable(
relations, volatile=True)
assert (data.size(2) - args.timesteps) >= args.timesteps
data_encoder = data[:, :, :args.timesteps, :].contiguous()
data_decoder = data[:, :, -args.timesteps:, :].contiguous()
logits = encoder(data_encoder, rel_rec, rel_send)
edges = gumbel_softmax(logits, tau=args.temp, hard=True)
prob = my_softmax(logits, -1)
output = decoder(data_decoder, edges, rel_rec, rel_send, 1)
target = data_decoder[:, :, 1:, :]
loss_nll = nll_gaussian(output, target, args.var)
loss_kl = kl_categorical_uniform(prob, args.num_atoms, args.edge_types)
acc = edge_accuracy(logits, relations)
acc_test.append(acc)
mse_test.append(F.mse_loss(output, target).data[0])
nll_test.append(loss_nll.data[0])
kl_test.append(loss_kl.data[0])
# For plotting purposes
if args.decoder == 'rnn':
if args.dynamic_graph:
output = decoder(data, edges, rel_rec, rel_send, 100,
burn_in=True, burn_in_steps=args.timesteps,
dynamic_graph=True, encoder=encoder,
temp=args.temp)
else:
output = decoder(data, edges, rel_rec, rel_send, 100,
burn_in=True, burn_in_steps=args.timesteps)
output = output[:, :, args.timesteps:, :]
target = data[:, :, -args.timesteps:, :]
else:
data_plot = data[:, :, args.timesteps:args.timesteps + 21,
:].contiguous()
output = decoder(data_plot, edges, rel_rec, rel_send, 20)
target = data_plot[:, :, 1:, :]
mse = ((target - output) ** 2).mean(dim=0).mean(dim=0).mean(dim=-1)
tot_mse += mse.data.cpu().numpy()
counter += 1
mean_mse = tot_mse / counter
mse_str = '['
for mse_step in mean_mse[:-1]:
mse_str += " {:.12f} ,".format(mse_step)
mse_str += " {:.12f} ".format(mean_mse[-1])
mse_str += ']'
print('--------------------------------')
print('--------Testing-----------------')
print('--------------------------------')
print('nll_test: {:.10f}'.format(np.mean(nll_test)),
'kl_test: {:.10f}'.format(np.mean(kl_test)),
'mse_test: {:.10f}'.format(np.mean(mse_test)),
'acc_test: {:.10f}'.format(np.mean(acc_test)))
print('MSE: {}'.format(mse_str))
if args.save_folder:
print('--------------------------------', file=log)
print('--------Testing-----------------', file=log)
print('--------------------------------', file=log)
print('nll_test: {:.10f}'.format(np.mean(nll_test)),
'kl_test: {:.10f}'.format(np.mean(kl_test)),
'mse_test: {:.10f}'.format(np.mean(mse_test)),
'acc_test: {:.10f}'.format(np.mean(acc_test)),
file=log)
print('MSE: {}'.format(mse_str), file=log)
log.flush()
# Train model
t_total = time.time()
best_val_loss = np.inf
best_epoch = 0
for epoch in range(args.epochs):
val_loss = train(epoch, best_val_loss)
if val_loss < best_val_loss:
best_val_loss = val_loss
best_epoch = epoch
print("Optimization Finished!")
print("Best Epoch: {:04d}".format(best_epoch))
if args.save_folder:
print("Best Epoch: {:04d}".format(best_epoch), file=log)
log.flush()
test()
if log is not None:
print(save_folder)
log.close()