-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgan.py
210 lines (172 loc) · 7.59 KB
/
gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
""" Implementation of a Generative Adversarial Network. Code adapted from
datacamp tutorials with some additions to cater for our forest
implementation. """
# Adapted from https://www.datacamp.com/community/tutorials/generative-adversarial-networks
import os
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
from random import choice
import tensorflow
from tensorflow.keras.layers import Input
from tensorflow.keras.models import Model, Sequential
from tensorflow.python.keras.layers.core import Dense, Dropout
from tensorflow.python.keras.layers.advanced_activations import LeakyReLU
from tensorflow.keras.datasets import mnist
from tensorflow.keras.optimizers import Adam
from tensorflow.keras import initializers
from tensorflow.keras.models import load_model
from language_getter import produce_language
from pickle import load
from random import shuffle
from collections import Counter
# Let Keras know that we are using tensorflow as our backend engine
os.environ["KERAS_BACKEND"] = "tensorflow"
# The dimension of our random noise vector.
random_dim = 100
# Load a neural network
my_nn = load_model('new_nn.h5')
class Generator:
def __init__(self, g=None):
if g:
self.G = g # if a generator is exclusively passed
else:
self.G = Sequential()
self.G.add(Dense(256, input_dim=random_dim, kernel_initializer=initializers.RandomNormal(stddev=0.02)))
self.G.add(LeakyReLU(0.2))
self.G.add(Dense(512))
self.G.add(LeakyReLU(0.2))
self.G.add(Dense(1024))
self.G.add(LeakyReLU(0.2))
self.G.add(Dense(784, activation='tanh'))
self.G.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.0002, beta_1=0.5))
class Discriminator:
def __init__(self):
self.D = Sequential()
self.D.add(Dense(1024, input_dim=784, kernel_initializer=initializers.RandomNormal(stddev=0.02)))
self.D.add(LeakyReLU(0.2))
self.D.add(Dropout(0.3))
self.D.add(Dense(512))
self.D.add(LeakyReLU(0.2))
self.D.add(Dropout(0.3))
self.D.add(Dense(256))
self.D.add(LeakyReLU(0.2))
self.D.add(Dropout(0.3))
self.D.add(Dense(1, activation='sigmoid'))
self.D.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.0002, beta_1=0.5))
self.D.trainable = False
def reset(self):
self.D.reset_states() # resets weights and biases of model
class GAN:
def __init__(self, nn, random_dim=100, discriminator=None, generator=None):
self.O = Adam(lr=0.0002, beta_1=0.5) # Adam optimizer
self.D = (Discriminator().D if not discriminator else discriminator.D)
self.G = (Generator().G if not generator else generator.G)
self.nn = nn # neural network
self.input = Input(shape=(random_dim,))
self.output = self.D(self.G(self.input))
self.GAN = Model(inputs=self.input, outputs=self.output)
self.GAN.compile(loss='binary_crossentropy', optimizer=self.O,
metrics=['accuracy'])
def train(self, testid, epochs=1, batch_size=128, id=1, plot=True,
attack=False, tree=None, xtrain=None, xtest=None):
# Get the training and testing data
x_train, y_train, x_test, y_test = 0, 0, 0, 0
if xtrain is not None: # if loaded externally
x_train, x_test = xtrain, xtest
x_train = (x_train.astype(np.float32) - 127.5)/127.5
x_train = x_train.reshape(x_train.shape[0], x_train.shape[1] ** 2)
else: # get mnist data
x_train, y_train, x_test, y_test = load_mnist_data()
# Split the training data into batches of size 128
if x_train.shape[0] >= 128:
batch_count = x_train.shape[0] // batch_size
else:
batch_count = 1
# Initializing the variable
generated_images = None
# # Empty list to hold old images for testing out experience replay
old_imgs = []
# # A list to hold possible morphed images
morphed = []
for e in range(1, epochs+1):
print('-'*15, 'Epoch %d' % id, '-'*15)
for _ in tqdm(range(batch_count)):
noise = np.random.normal(0, 1, size=[batch_size, random_dim])
image_batch = x_train[np.random.randint(0, x_train.shape[0], size=batch_size)]
image_batch = image_batch.reshape(128, 784) # remove later
# Generate fake MNIST images
generated_images = self.G.predict(noise)
X = np.concatenate([image_batch, generated_images])
y_dis = np.zeros(2*batch_size)
# One-sided label smoothing
y_dis[:batch_size] = 0.9
# Train discriminator
self.toggleDTrain()
self.D.train_on_batch(X, y_dis)
# Train generator
noise = np.random.normal(0, 1, size=[batch_size, random_dim])
self.toggleDTrain()
# Train the GAN model
self.GAN.train_on_batch(noise, np.ones(batch_size))
# Plots the images if plot is set to True(default)
# Can add an extra condition e.g. if id == 10
# possible_morphs = []
if plot and not tree: # plotting images for a normal gan
plot_generated_images(id, self.G)
if plot and tree and id % 5 == 0: # plotting images for forest gan
plot_tree_images(tree, testid)
# Increase id
id += 1
def toggleDTrain(self):
self.D.trainable = not self.D.trainable
def load_mnist_data():
# load the data
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# reshape the xtrain
x_train = reshape_x(x_train)
x_test = x_test.reshape(10000, 784)
return (x_train, y_train, x_test, y_test)
def reshape_x(x_train):
# normalize our inputs to be in the range[-1, 1]
x_train = (x_train.astype(np.float32) - 127.5)/127.5
# convert x_train with a shape of (60000, 28, 28) to (60000, 784) so we have
# 784 columns per row
x_train = x_train.reshape(60000, 784)
return x_train
def plot_generated_images(id, generator, examples=100, dim=(10, 10),
figsize=(10, 10)):
''' Plots gan images '''
noise = np.random.normal(0, 1, size=[examples, random_dim])
generated_images = generator.predict(noise)
generated_images = generated_images.reshape(examples, 28, 28)
plt.figure(figsize=figsize)
for i in range(generated_images.shape[0]):
plt.subplot(dim[0], dim[1], i+1)
plt.imshow(generated_images[i], interpolation='nearest', cmap='gray_r')
plt.axis('off')
plt.tight_layout()
newfile = filename = 'GANGeneratedImage%d' % id
copy = 1
while os.path.exists(newfile + '.png'):
newfile = filename + '(' + str(copy) + ')'
copy += 1
plt.savefig(newfile)
plt.close('all')
def plot_tree_images(tree, id):
''' Plots forest(networked GANs) images '''
noise = np.random.normal(0, 1, size=[100, 100])
generated_images = tree.generator.G.predict(noise)
generated_images = generated_images.reshape(100, 28, 28)
plt.figure(figsize=(10, 10))
for i in range(generated_images.shape[0]):
plt.subplot(10, 10, i+1)
plt.imshow(generated_images[i], interpolation='nearest', cmap='gray_r')
plt.axis('off')
plt.tight_layout()
newfile = filename = 'test' + str(id) + '/' + tree.name
num = 1
while os.path.exists(newfile + str(num) + '.png'):
num += 1
plt.savefig(newfile + str(num) + '.png')
plt.close('all')