Skip to content

Update quality_indicator.py #11

Update quality_indicator.py

Update quality_indicator.py #11

Triggered via push February 12, 2024 11:30
Status Failure
Total duration 20s
Artifacts

Lint.yml

on: push
Run linters
11s
Run linters
Fit to window
Zoom out
Zoom in

Annotations

73 errors and 3 warnings
desdeo_tools/scalarization/ASF.py#L392
Trailing whitespace (W291)
desdeo_tools/scalarization/ASF.py#L393
Trailing whitespace (W291)
desdeo_tools/scalarization/ASF.py#L395
Blank line contains whitespace (W293)
desdeo_tools/scalarization/ASF.py#L403
Blank line contains whitespace (W293)
desdeo_tools/scalarization/ASF.py#L406
Trailing whitespace (W291)
desdeo_tools/scalarization/ASF.py#L407
Trailing whitespace (W291)
desdeo_tools/scalarization/ASF.py#L409
Blank line contains whitespace (W293)
desdeo_tools/scalarization/ASF.py#L412
Trailing whitespace (W291)
desdeo_tools/scalarization/ASF.py#L469
Blank line contains whitespace (W293)
desdeo_tools/scalarization/ASF.py#L474
Blank line contains whitespace (W293)
desdeo_tools/scalarization/ASF.py#L477
Trailing whitespace (W291)
desdeo_tools/scalarization/ASF.py#L497
Local variable 'phi' is assigned to but never used (F841)
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/interaction/validators.py#L1
import pandas as pd import numpy as np class ValidationError(Exception): - """Raised when an error related to the validation is encountered. - """ + """Raised when an error related to the validation is encountered.""" -def validate_ref_point_with_ideal_and_nadir( - dimensions_data: pd.DataFrame, reference_point: pd.DataFrame -): +def validate_ref_point_with_ideal_and_nadir(dimensions_data: pd.DataFrame, reference_point: pd.DataFrame): validate_ref_point_dimensions(dimensions_data, reference_point) validate_ref_point_data_type(reference_point) validate_ref_point_with_ideal(dimensions_data, reference_point) validate_with_ref_point_nadir(dimensions_data, reference_point) -def validate_ref_point_with_ideal( - dimensions_data: pd.DataFrame, reference_point: pd.DataFrame -): +def validate_ref_point_with_ideal(dimensions_data: pd.DataFrame, reference_point: pd.DataFrame): validate_ref_point_dimensions(dimensions_data, reference_point) ideal_fitness = dimensions_data.loc["ideal"] * dimensions_data.loc["minimize"] ref_point_fitness = reference_point * dimensions_data.loc["minimize"] if not (ideal_fitness <= ref_point_fitness).all(axis=None): - problematic_columns = ideal_fitness.index[ - (ideal_fitness > ref_point_fitness).values.tolist()[0] - ].values + problematic_columns = ideal_fitness.index[(ideal_fitness > ref_point_fitness).values.tolist()[0]].values msg = ( f"Reference point should be worse than or equal to the ideal point\n" f"The following columns have problematic values: {problematic_columns}" ) raise ValidationError(msg) -def validate_with_ref_point_nadir( - dimensions_data: pd.DataFrame, reference_point: pd.DataFrame -): +def validate_with_ref_point_nadir(dimensions_data: pd.DataFrame, reference_point: pd.DataFrame): validate_ref_point_dimensions(dimensions_data, reference_point) nadir_fitness = dimensions_data.loc["nadir"] * dimensions_data.loc["minimize"] ref_point_fitness = reference_point * dimensions_data.loc["minimize"] if not (ref_point_fitness <= nadir_fitness).all(axis=None): - problematic_columns = nadir_fitness.index[ - (nadir_fitness < ref_point_fitness).values.tolist()[0] - ].values + problematic_columns = nadir_fitness.index[(nadir_fitness < ref_point_fitness).values.tolist()[0]].values msg = ( f"Reference point should be better than or equal to the nadir point\n" f"The following columns have problematic values: {problematic_columns}" ) raise ValidationError(msg) -def validate_ref_point_dimensions( - dimensions_data: pd.DataFrame, reference_point: pd.DataFrame -): +def validate_ref_point_dimensions(dimensions_data: pd.DataFrame, reference_point: pd.DataFrame): if not dimensions_data.shape[1] == reference_point.shape[1]: msg = ( f"There is a mismatch in the number of columns of the dataframes.\n" f"Columns in dimensions data: {dimensions_data.columns}\n" f"Columns in the reference point provided: {reference_point.columns}"
desdeo_tools/utilities/quality_indicator.py#L95
Expected 2 blank lines after class or function definition, found 1 (E305)
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/interaction/validators.py#L70
def validate_ref_point_data_type(reference_point: pd.DataFrame): for dtype in reference_point.dtypes: if not pd.api.types.is_numeric_dtype(dtype): - msg = ( - f"Type of data in reference point dataframe should be numeric.\n" - f"Provided datatype: {dtype}" - ) + msg = f"Type of data in reference point dataframe should be numeric.\n" f"Provided datatype: {dtype}" raise ValidationError(msg) def validate_specified_solutions(indices: np.ndarray, n_solutions: int) -> None: """Validate the Decision maker's choice of preferred/non-preferred solutions.
desdeo_tools/utilities/quality_indicator.py#L96
Trailing whitespace (W291)
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/interaction/validators.py#L94
if indices.shape[0] < 1: raise ValidationError("Please specify at least one (non-)preferred solution.") if not isinstance(indices, (np.ndarray, list)): raise ValidationError( - "Please specify index/indices of (non-)preferred solutions in a list, even if there is only " - "one." + "Please specify index/indices of (non-)preferred solutions in a list, even if there is only " "one." ) if not all(0 <= i <= (n_solutions - 1) for i in indices): msg = "indices of (non-)preferred solutions should be between 0 and {}. Current indices are {}.".format( n_solutions - 1, indices ) raise ValidationError(msg) -def validate_bounds( - dimensions_data: pd.DataFrame, bounds: np.ndarray, n_objectives: int -) -> None: +def validate_bounds(dimensions_data: pd.DataFrame, bounds: np.ndarray, n_objectives: int) -> None: """Validate the Decision maker's desired lower and upper bounds for objective values. Args: dimensions_data (pd.DataFrame): DataFrame including information whether an objective is minimized or maximized, for each objective. In addition, includes ideal and nadir vectors.
desdeo_tools/utilities/quality_indicator.py#L97
Trailing whitespace (W291)
desdeo_tools/utilities/quality_indicator.py#L101
Line too long (129 > 120 characters) (E501)
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/interaction/validators.py#L122
Raises: ValidationError: In case desired bounds are invalid. """ if not isinstance(bounds, np.ndarray): - msg = "Please specify bounds as a numpy array. Current type: {}.".format( - type(bounds) - ) + msg = "Please specify bounds as a numpy array. Current type: {}.".format(type(bounds)) raise ValidationError(msg) if len(bounds) != n_objectives: - msg = "Length of 'bounds' ({}) must be the same as number of objectives ({}).".format( - len(bounds), n_objectives - ) + msg = "Length of 'bounds' ({}) must be the same as number of objectives ({}).".format(len(bounds), n_objectives) raise ValidationError(msg) if not all(isinstance(b, (np.ndarray, list)) for b in bounds): print(type(bounds[0])) msg = "Please give bounds for each objective in a list." raise ValidationError(msg)
desdeo_tools/utilities/quality_indicator.py#L104
Trailing whitespace (W291)
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/interaction/validators.py#L144
msg = "Lower bound cannot be greater than upper bound. Please specify lower bound first, then upper bound." raise ValidationError(msg) # check that bounds are within ideal and nadir points for each objective for i, b in enumerate(bounds): - if ( - dimensions_data.loc["minimize"].values.tolist()[i] == 1 - ): # minimized objectives + if dimensions_data.loc["minimize"].values.tolist()[i] == 1: # minimized objectives if dimensions_data.loc["ideal"].values.tolist()[i] is not None: if b[0] < dimensions_data.loc["ideal"].values.tolist()[i]: msg = "Lower bound cannot be lower than ideal value for objective. Ideal vector: {}.".format( dimensions_data.loc["ideal"].values.tolist() )
desdeo_tools/utilities/quality_indicator.py#L110
Expected 2 blank lines, found 0 (E302)
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/maps/preference_incorporated_space_RP.py#L11
from typing import Type, List, Union, Dict class PreferenceIncorporatedSpaceError(Exception): - """Raised when an error related to the preference incorporated space is encountered. - """ + """Raised when an error related to the preference incorporated space is encountered.""" class PreferenceIncorporatedSpace: def __init__( self,
desdeo_tools/utilities/quality_indicator.py#L172
Expected 2 blank lines, found 1 (E302)
tests/conftest.py#L9
Blank line contains whitespace (W293)
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/maps/preference_incorporated_space_RP.py#L45
if utopian is not None: self.utopian = utopian if nadir is not None: self.nadir = nadir - self.initialized_scalarizers = [ - scalarizer(utopian=utopian, nadir=nadir, rho=rho) - for scalarizer in scalarizers - ] + self.initialized_scalarizers = [scalarizer(utopian=utopian, nadir=nadir, rho=rho) for scalarizer in scalarizers] self.has_additional_constraints = False self.constrained_scalarizers = [] for scalarizer in self.initialized_scalarizers: # self.required_keys = scalarizer.required_keys.keys() self.constrained_scalarizers.append(scalarizer.has_additional_constraints) - self.has_additional_constraints = ( - self.has_additional_constraints or scalarizer.has_additional_constraints - ) + self.has_additional_constraints = self.has_additional_constraints or scalarizer.has_additional_constraints def __call__(self, objective_vector: np.ndarray): - mapped_vectors = np.zeros( - (len(objective_vector), len(self.initialized_scalarizers)) - ) + mapped_vectors = np.zeros((len(objective_vector), len(self.initialized_scalarizers))) for i, scalarizer in enumerate(self.initialized_scalarizers): mapped_vectors[:, i] = scalarizer(objective_vector, self.preferences[i]) return mapped_vectors def evaluate_constraints(self, objective_vector: np.ndarray):
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/maps/preference_incorporated_space_RP.py#L81
if not has_constraints: continue constraints = np.hstack( ( constraints, - scalarizer.evaluate_constraints( - objective_vector, self.preferences[i] - ), + scalarizer.evaluate_constraints(objective_vector, self.preferences[i]), ) ) class classificationPIS:
tests/conftest.py#L13
Blank line contains whitespace (W293)
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/maps/preference_incorporated_space_RP.py#L132
self.nadir = nadir self.nimbus = NIMBUS_GLIDE(utopian=utopian, nadir=nadir) self.nimbus_copycat = reference_point_method_GLIDE(utopian=utopian, nadir=nadir) - self.initialized_scalarizers = [ - scalarizer(utopian=utopian, nadir=nadir, rho=rho) - for scalarizer in scalarizers - ] + self.initialized_scalarizers = [scalarizer(utopian=utopian, nadir=nadir, rho=rho) for scalarizer in scalarizers] self.has_additional_constraints = False def update_preference(self, preference: dict): self.preference = preference if "classifications" in preference.keys(): self.classification_preference = preference - self.RP_preference = classification_to_reference_point( - preference, ideal=self.utopian, nadir=self.nadir - ) + self.RP_preference = classification_to_reference_point(preference, ideal=self.utopian, nadir=self.nadir) else: - raise PreferenceIncorporatedSpaceError( - "Classification preference expected." - ) + raise PreferenceIncorporatedSpaceError("Classification preference expected.") def __call__(self, objective_vector: np.ndarray): # IOPIS/NIMBUS logic - nimbus_obj = self.nimbus( - objective_vector=objective_vector, preference=self.classification_preference - ) - nimbus_constraint = self.nimbus.evaluate_constraints( - objective_vector, self.classification_preference - ) + nimbus_obj = self.nimbus(objective_vector=objective_vector, preference=self.classification_preference) + nimbus_constraint = self.nimbus.evaluate_constraints(objective_vector, self.classification_preference) feasible = np.all(nimbus_constraint > 0, axis=1) if not feasible.any(): nimbus_optimal = objective_vector[nimbus_constraint.max(axis=1).argmax()] else: nimbus_obj[~feasible] = np.inf nimbus_optimal = objective_vector[nimbus_obj.argmin()] # IOPIS mapping - mapped_vectors = np.zeros( - (len(objective_vector), len(self.initialized_scalarizers) + 1) - ) + mapped_vectors = np.zeros((len(objective_vector), len(self.initialized_scalarizers) + 1)) mapped_vectors[:, 0] = self.nimbus_copycat( objective_vector=objective_vector, preference={"reference point": nimbus_optimal}, )
tests/solver/test_scalarsolver.py#L10
Block comment should start with '# ' (E265)
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/maps/preference_incorporated_space_RP.py#L192
num_DM: int = 2, scalarizer: Type[GLIDEBase] = AUG_STOM_GLIDE, nadir: np.ndarray = None, rho: float = 1e-6, ): - super().__init__( - scalarizers=[scalarizer] * num_DM, utopian=utopian, nadir=nadir, rho=rho - ) + super().__init__(scalarizers=[scalarizer] * num_DM, utopian=utopian, nadir=nadir, rho=rho) def update_preference(self, preference: List[Dict]): self.preferences = preference
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/scalarization/EpsilonConstraintMethod.py#L4
from desdeo_tools.solver.ScalarSolver import ScalarMinimizer from typing import Optional, Callable, Union class ECMError(Exception): - """Raised when an error related to the Epsilon Constraint Method is encountered. - """ + """Raised when an error related to the Epsilon Constraint Method is encountered.""" class EpsilonConstraintMethod: """A class to represent a class for scalarizing MOO problems using the epsilon constraint method.
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/scalarization/EpsilonConstraintMethod.py#L61
if ival != self._to_be_minimized ] ) if len(epsilon_left_side) != len(self.epsilons): - msg = ( - "The lenght of the epsilons array ({}) must match the total number of objectives - 1 ({})." - ).format(len(self.epsilons), len(self.objectives(xs)) - 1) + msg = ("The lenght of the epsilons array ({}) must match the total number of objectives - 1 ({}).").format( + len(self.epsilons), len(self.objectives(xs)) - 1 + ) raise ECMError(msg) # evaluate values of epsilon constraint functions - e: np.ndarray = np.array( - [-(f - v) for f, v in zip(epsilon_left_side, self.epsilons)] - ) + e: np.ndarray = np.array([-(f - v) for f, v in zip(epsilon_left_side, self.epsilons)]) if self.constraints(xs) is not None: c = self.constraints(xs) - return np.concatenate( - [c, e], axis=None - ) # does it work with multiple constraints? + return np.concatenate([c, e], axis=None) # does it work with multiple constraints? else: return e def __call__(self, objective_vector: np.ndarray) -> Union[float, np.ndarray]: """
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/scalarization/EpsilonConstraintMethod.py#L90
Returns: Value of objective function to be minimized. """ if np.shape(objective_vector)[0] > 1: # more rows than one - return np.array( - [ - objective_vector[i][self._to_be_minimized] - for i, _ in enumerate(objective_vector) - ] - ) + return np.array([objective_vector[i][self._to_be_minimized] for i, _ in enumerate(objective_vector)]) else: return objective_vector[0][self._to_be_minimized] # Testing the method if __name__ == "__main__": # 1. Define objective functions, bounds and constraints def volume(r, h): - return np.pi * r ** 2 * h + return np.pi * r**2 * h def area(r, h): - return 2 * np.pi ** 2 + np.pi * r * h + return 2 * np.pi**2 + np.pi * r * h # add third objective def weight(v): return 0.01 * v
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/scalarization/EpsilonConstraintMethod.py#L146
# index of which objective function to minimize obj_min = 2 # set upper bound(s) for the other objectives, in the same order than which corresponding objective functions # are defined - epsil = np.array( - [2000, -100] - ) # multiply the epsilons with -1, if the constraint is of form f_i(x) >= e_i + epsil = np.array([2000, -100]) # multiply the epsilons with -1, if the constraint is of form f_i(x) >= e_i # create an instance of EpsilonConstraintMethod-class for given problem eps = EpsilonConstraintMethod(objective, obj_min, epsil, constraints=con_golden) # constraint evaluator, used by the solver
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/scalarization/EpsilonConstraintMethod.py#L164
# 3. Solve # starting point x0 = np.array([2, 11]) - minimizer = ScalarMinimizer( - scalarized_objective, bounds, constraint_evaluator=cons_evaluate, method=None - ) + minimizer = ScalarMinimizer(scalarized_objective, bounds, constraint_evaluator=cons_evaluate, method=None) # minimize res = minimizer.minimize(x0) final_r, final_h = res["x"][0], res["x"][1] final_obj = objective(res["x"]).squeeze() final_V, final_A, final_W = final_obj[0], final_obj[1], final_obj[2] print(f"Final cake specs: radius: {final_r}cm, height: {final_h}cm.") - print( - f"Final cake dimensions: volume: {final_V}, area: {-final_A}, weight: {final_W}." - ) + print(f"Final cake dimensions: volume: {final_V}, area: {-final_A}, weight: {final_W}.") print(final_r / final_h) print(res)
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/scalarization/ASF.py#L14
Instances of the implementations of this class should function as function. """ @AbstractMethod - def __call__( - self, objective_vector: np.ndarray, reference_point: np.ndarray - ) -> Union[float, np.ndarray]: + def __call__(self, objective_vector: np.ndarray, reference_point: np.ndarray) -> Union[float, np.ndarray]: """Evaluate the ASF. Args: objective_vectors (np.ndarray): The objective vectors to calculate the values.
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/scalarization/ASF.py#L53
""" def __init__(self, weights: np.ndarray): self.weights = weights - def __call__( - self, objective_vector: np.ndarray, reference_point: np.ndarray - ) -> Union[float, np.ndarray]: + def __call__(self, objective_vector: np.ndarray, reference_point: np.ndarray) -> Union[float, np.ndarray]: """Evaluate the simple order-representing ASF. Args: objective_vector (np.ndarray): A vector representing a solution in the solution space.
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/scalarization/ASF.py#L118
self.preferential_factors = preferential_factors self.nadir = nadir self.utopian_point = utopian_point self.rho = rho - def __call__( - self, objective_vector: np.ndarray, reference_point: np.ndarray - ) -> Union[float, np.ndarray]: + def __call__(self, objective_vector: np.ndarray, reference_point: np.ndarray) -> Union[float, np.ndarray]: mu = self.preferential_factors f = objective_vector q = reference_point rho = self.rho z_nad = self.nadir
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/scalarization/ASF.py#L181
self.lt_inds = lt_inds self.lte_inds = lte_inds self.rho = rho self.rho_sum = rho_sum - def __call__( - self, objective_vector: np.ndarray, reference_point: np.ndarray - ) -> Union[float, np.ndarray]: + def __call__(self, objective_vector: np.ndarray, reference_point: np.ndarray) -> Union[float, np.ndarray]: # assure this function works with single objective vectors if objective_vector.ndim == 1: f = objective_vector.reshape((1, -1)) else: f = objective_vector
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/scalarization/ASF.py#L231
def __init__(self, ideal: np.ndarray, rho: float = 1e-6, rho_sum: float = 1e-6): self.ideal = ideal self.rho = rho self.rho_sum = rho_sum - def __call__( - self, objective_vectors: np.ndarray, reference_point: np.ndarray - ) -> Union[float, np.ndarray]: + def __call__(self, objective_vectors: np.ndarray, reference_point: np.ndarray) -> Union[float, np.ndarray]: # assure this function works with single objective vectors if objective_vectors.ndim == 1: f = objective_vectors.reshape((1, -1)) else: f = objective_vectors
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/scalarization/ASF.py#L346
nad = self.nadir uto = self.ideal - self.rho ex_mask = np.full((f.shape[1]), True, dtype=bool) ex_mask[self.index_to_exclude] = False - max_term = np.max( - (f[:, ex_mask] - nad[ex_mask]) / (nad[ex_mask] - z[ex_mask]), axis=1 - ) - sum_term_1 = self.rho_sum * np.sum( - (f[:, ex_mask]) / (nad[ex_mask] - z[ex_mask]), axis=1 - ) + max_term = np.max((f[:, ex_mask] - nad[ex_mask]) / (nad[ex_mask] - z[ex_mask]), axis=1) + sum_term_1 = self.rho_sum * np.sum((f[:, ex_mask]) / (nad[ex_mask] - z[ex_mask]), axis=1) # avoid division by zeros - sum_term_2 = self.rho_sum * np.sum( - (f[:, ~ex_mask]) / (nad[~ex_mask] - uto[~ex_mask]), axis=1 - ) + sum_term_2 = self.rho_sum * np.sum((f[:, ~ex_mask]) / (nad[~ex_mask] - uto[~ex_mask]), axis=1) return max_term + sum_term_1 + sum_term_2 class GuessASF(ASFBase):
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/scalarization/ASF.py#L387
return max_term class AspResASF(ASFBase): """Implementation of an ASF using both aspiration and reservation levels. - directly consider both upper and lower bounds of the preferred ranges within the solution - generation process, the variant of ASF utilizing both aspirations and reservations levels. + directly consider both upper and lower bounds of the preferred ranges within the solution + generation process, the variant of ASF utilizing both aspirations and reservations levels. Originally proposed by Wierzbicki (1986), and also used in the PIE method (Sindhya et al. (2011)). - + Args: nadir (np.ndarray): The nadir point. ideal (np.ndarray): The ideal point. rho A small number to form the utopian point. rho_sum (float): A small number to be used as a weight for the sum term. alpha (float): An extricly positive number. beta(float): An extricly positive number. - + References: Wierzbicki, A. P. - On the completeness and constructiveness of parametric characterizations to vector optimization - problems, + On the completeness and constructiveness of parametric characterizations to vector optimization + problems, OR Spektrum, 1986, 8(2), 73–87. - + Sindhya, K., Ruiz, A. B. and Miettinen, K. A preference based interactive evolutionary algorithm for multi-objective optimization: PIE - in H. Takahashi, K. Deb, E. Wanner and S. Greco, eds, ‘Evolutionary Multi-Criterion Optimization: + in H. Takahashi, K. Deb, E. Wanner and S. Greco, eds, ‘Evolutionary Multi-Criterion Optimization: 6th International Conference’, Proceedings, Springer-Verlag, Berlin, Heidelberg, 2011, pp. 212–225. """ def __init__( self,
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/scalarization/ASF.py#L464
return max_term + sum_term class STEM(ASFBase): """Implementation of the Step Method (STEM). - + Args: nadir (np.ndarray): The nadir point. ideal (np.ndarray): The ideal point. rho A small number to form the utopian point. - + References: Benayoun, R., De Montgolfier, J., Tergny, J. and Laritchev, O. - Linear programming with multiple objective functions: Step method (STEM)’, + Linear programming with multiple objective functions: Step method (STEM)’, Mathematical programming, 1971, 1(1), 366–375. """ def __init__(self, nadir: np.ndarray, ideal: np.ndarray, rho: float = 1e-6):
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/interaction/request.py#L215
f"Mismatch in column names of data and dimensions_data.\n" f"Column names in data: {data.columns}" f"Column names in dimensions_data: {dimensions_data.columns}" ) raise RequestError(msg) - rouge_indices = [ - index - for index in dimensions_data.index - if index not in acceptable_dimensions_data_indices - ] + rouge_indices = [index for index in dimensions_data.index if index not in acceptable_dimensions_data_indices] if rouge_indices: msg = ( f"dimensions_data should only contain the following indices:\n" f"{acceptable_dimensions_data_indices}\n" f"The dataframe provided contains the following unsupported indices:\n" f"{rouge_indices}" ) raise RequestError(msg) if not isinstance(chart_title, (str, type(None))): - msg = ( - f"Chart title should be a string. Provided chart type is:" - f"{type(chart_title)}" - ) + msg = f"Chart title should be a string. Provided chart type is:" f"{type(chart_title)}" raise RequestError(msg) if not isinstance(message, str): if not isinstance(message, list): msg = ( f"Message/s to be printed should be string or list of strings"
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/interaction/request.py#L324
msg = ( f"Dimensional data should be in a pandas dataframe.\n" f"Provided data is of type: {type(dimensions_data)}" ) raise RequestError(msg) - rouge_indices = [ - index - for index in dimensions_data.index - if index not in acceptable_dimensions_data_indices - ] + rouge_indices = [index for index in dimensions_data.index if index not in acceptable_dimensions_data_indices] if rouge_indices: msg = ( f"dimensions_data should only contain the following indices:\n" f"{acceptable_dimensions_data_indices}\n" f"The dataframe provided contains the following unsupported indices:\n"
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/interaction/request.py#L375
RequestError: If reference point is not provided in a pandas DataFrame. """ if not isinstance(value, pd.DataFrame): msg = "Reference should be provided in a pandas dataframe format" raise RequestError(msg) - self.content["validator"]( - reference_point=value, dimensions_data=self.content["dimensions_data"] - ) + self.content["validator"](reference_point=value, dimensions_data=self.content["dimensions_data"]) self._response = value class PreferredSolutionPreference(BaseRequest): """Methods can use this class to ask the Decision maker to provide their preferences
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/scalarization/MOEADSF.py#L4
from abc import abstractmethod from typing import Union class MOEADSFError(Exception): - """Raised when an error related to the MOEADSF classes is encountered. - """ + """Raised when an error related to the MOEADSF classes is encountered.""" class MOEADSFBase(abc.ABC): """A base class for representing scalarizing functions for the MOEA/D algorithm. Instances of the implementations of this class should work as function.
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/scalarization/MOEADSF.py#L38
""" pass class Tchebycheff(MOEADSFBase): - """Implements the Tchebycheff scalarizing function. - """ + """Implements the Tchebycheff scalarizing function.""" def __call__( self, objective_vector: np.ndarray, reference_vector: np.ndarray,
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/scalarization/MOEADSF.py#L62
Note: The shaped of objective_vector and reference_vector must match. """ if not objective_vector.shape == reference_vector.shape: - msg = ( - "The dimensions of the objective vector {} and " - "reference_vector {} do not match." - ).format(objective_vector.shape, reference_vector.shape) + msg = ("The dimensions of the objective vector {} and " "reference_vector {} do not match.").format( + objective_vector.shape, reference_vector.shape + ) raise MOEADSFError(msg) feval = np.abs(objective_vector - ideal_vector) * reference_vector max_fun = np.max(feval) return max_fun class WeightedSum(MOEADSFBase): - """Implements the Weighted sum scalarization function - """ + """Implements the Weighted sum scalarization function""" - def __call__( - self, objective_vector: np.ndarray, reference_vector: np.ndarray - ) -> Union[float, np.ndarray]: + def __call__(self, objective_vector: np.ndarray, reference_vector: np.ndarray) -> Union[float, np.ndarray]: """Evaluate the WeightedSum scalarizing function. Args: objective_vector (np.ndarray): A vector representing a solution in the objective space.
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/scalarization/MOEADSF.py#L94
Note: The shaped of objective_vector and reference_vector must match. A reference point is not needed. """ if not objective_vector.shape == reference_vector.shape: - msg = ( - "The dimensions of the objective vector {} and " - "reference_vector {} do not match." - ).format(objective_vector.shape, reference_vector.shape) + msg = ("The dimensions of the objective vector {} and " "reference_vector {} do not match.").format( + objective_vector.shape, reference_vector.shape + ) raise MOEADSFError(msg) feval = np.sum(objective_vector * reference_vector) return feval
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/scalarization/MOEADSF.py#L141
Note: The shaped of objective_vector and reference_vector must match. The reference point is not needed. """ if not objective_vector.shape == reference_vector.shape: - msg = ( - "The dimensions of the objective vector {} and " - "reference_vector {} do not match." - ).format(objective_vector.shape, reference_vector.shape) + msg = ("The dimensions of the objective vector {} and " "reference_vector {} do not match.").format( + objective_vector.shape, reference_vector.shape + ) raise MOEADSFError(msg) norm_weights = np.linalg.norm(reference_vector) weights = np.true_divide(reference_vector, norm_weights) fx_a = objective_vector - ideal_vector
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/scalarization/Scalarizer.py#L54
res_scal = self._scalarizer(res_eval) return res_scal def __call__(self, xs: np.ndarray) -> np.ndarray: - """Wrapper to the evaluate method. - """ + """Wrapper to the evaluate method.""" return self.evaluate(xs) class DiscreteScalarizer: - """Implements a class to scalarize discrete vectors given a scalarizing function. - """ + """Implements a class to scalarize discrete vectors given a scalarizing function.""" def __init__(self, scalarizer: Callable, scalarizer_args: Dict = None): self._scalarizer = scalarizer self._scalarizer_args = scalarizer_args
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/scalarization/Scalarizer.py#L85
if __name__ == "__main__": vectors = np.array([[1, 1, 1], [2, 2, 2], [4, 5, 6.0]]) vector = np.array([1, 2, 3]) - dscalarizer = DiscreteScalarizer( - lambda x, a=1: a * np.sum(x, axis=1), scalarizer_args={"a": 2} - ) + dscalarizer = DiscreteScalarizer(lambda x, a=1: a * np.sum(x, axis=1), scalarizer_args={"a": 2}) res = dscalarizer(vectors) res_1d = dscalarizer(vector) print(res) print(res_1d)
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/utilities/pmod.py#L38
distance = 0 size = len(mapping_point) pp_size = len(pref_point) for j in range(0, size): for i in range(0, pp_size): - distance += (mapping_point[j][i] - pref_point[i]) * ( - mapping_point[j][i] - pref_point[i] - ) + distance += (mapping_point[j][i] - pref_point[i]) * (mapping_point[j][i] - pref_point[i]) sum_ += sqrt(distance) return sum_ / distance def dist_vector(vec1, vec2):
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/utilities/pmod.py#L78
distance = temp dist.append(distance) average = sum(dist) / len(dist) for i in range(0, size): temp = average - dist[i] - sum_ += temp ** 2 + sum_ += temp**2 return sqrt(sum_ / (size - 1)) def distan_d3( ref_point: np.ndarray,
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/utilities/lattice_generators.py#L76
Returns: np.ndarray: The lattice of points as a 2-D (num_points, num_dimensions) numpy array. """ - number_of_vectors = comb( - lattice_resolution + num_dimensions - 1, num_dimensions - 1, exact=True - ) + number_of_vectors = comb(lattice_resolution + num_dimensions - 1, num_dimensions - 1, exact=True) temp1 = range(1, num_dimensions + lattice_resolution) temp1 = np.array(list(combinations(temp1, num_dimensions - 1))) temp2 = np.array([range(num_dimensions - 1)] * number_of_vectors) temp = temp1 - temp2 - 1
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/utilities/lattice_generators.py#L93
weight[:, -1] = lattice_resolution - temp[:, -1] return weight / lattice_resolution -def simplexLatticefromNumPoints( - num_dimensions: int, num_points: int, atleast: bool = False -) -> np.ndarray: +def simplexLatticefromNumPoints(num_dimensions: int, num_points: int, atleast: bool = False) -> np.ndarray: """Create a simplex lattice design with the given number of points. The generated lattice is on the unit hyperplane, and the points are distributed in the positive orthant. See more information at: https://www.itl.nist.gov/div898/handbook/pri/section5/pri542.htm The lattice is generated by first finding the largest lattice resolution that can generate a lattice with the
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/utilities/lattice_generators.py#L117
np.ndarray: The lattice of points as a 2-D (num_points, num_dimensions) numpy array. """ temp_lattice_resolution = 0 while True: temp_lattice_resolution += 1 - number_of_vectors = comb( - temp_lattice_resolution + num_dimensions - 1, num_dimensions - 1, exact=True - ) + number_of_vectors = comb(temp_lattice_resolution + num_dimensions - 1, num_dimensions - 1, exact=True) if number_of_vectors > num_points: break if atleast: return simplexLatticeDesign(num_dimensions, temp_lattice_resolution) return simplexLatticeDesign(num_dimensions, temp_lattice_resolution - 1)
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/utilities/preference_converters.py#L1
"""Provides implementations that convert one type of preference information to another.""" import numpy as np -def classification_to_reference_point( - classification_preference: dict, ideal: np.ndarray, nadir: np.ndarray -) -> dict: +def classification_to_reference_point(classification_preference: dict, ideal: np.ndarray, nadir: np.ndarray) -> dict: """Convert classification type of preference (e.g. NIMBUS) to reference point preference. Args: classification_preference (dict): A dict containing keys 'current solution',
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/utilities/preference_converters.py#L19
dict: The preference in the form of a reference point. Contains one key: "reference point", which maps to the preference in a numpy array structure. """ z_bar = np.zeros_like(nadir, dtype=float) - improve_inds = np.where( - np.array(classification_preference["classifications"]) == "<" - )[0] - acceptable_inds = np.where( - np.array(classification_preference["classifications"]) == "=" - )[0] - free_inds = np.where(np.array(classification_preference["classifications"]) == "0")[ - 0 - ] - improve_until_inds = np.where( - np.array(classification_preference["classifications"]) == "<=" - )[0] - impaire_until_inds = np.where( - np.array(classification_preference["classifications"]) == ">=" - )[0] + improve_inds = np.where(np.array(classification_preference["classifications"]) == "<")[0] + acceptable_inds = np.where(np.array(classification_preference["classifications"]) == "=")[0] + free_inds = np.where(np.array(classification_preference["classifications"]) == "0")[0] + improve_until_inds = np.where(np.array(classification_preference["classifications"]) == "<=")[0] + impaire_until_inds = np.where(np.array(classification_preference["classifications"]) == ">=")[0] z_bar[improve_inds] = ideal[improve_inds] z_bar[improve_until_inds] = classification_preference["levels"][improve_until_inds] - z_bar[acceptable_inds] = classification_preference["current solution"][ - acceptable_inds - ] + z_bar[acceptable_inds] = classification_preference["current solution"][acceptable_inds] z_bar[impaire_until_inds] = classification_preference["levels"][impaire_until_inds] z_bar[free_inds] = nadir[free_inds] return {"reference point": z_bar}
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/solver/ScalarSolver.py#L23
class ScalarMethod: """A class the define and implement methods for minimizing scalar valued functions.""" - def __init__( - self, method: Callable, method_args=None, use_scipy: Optional[bool] = False - ): + def __init__(self, method: Callable, method_args=None, use_scipy: Optional[bool] = False): """ Args: method (Callable): A callable minimizer function which expects a callable scalar valued function to be minimized. The function should accept as its first argument a two dimensional numpy array and should
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/solver/ScalarSolver.py#L80
bounds=bounds, constraints=constraint_evaluator, **self._method_args, ) else: - res = self._method( - obj_fun, x0, bounds=bounds, constraints=constraint_evaluator - ) + res = self._method(obj_fun, x0, bounds=bounds, constraints=constraint_evaluator) return res class MixedIntegerMinimizer: - """Implements methods for solving scalar valued functions. Args: scalarized_objective (Callable): The objective function that has been scalarized and ready for minimization.
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/solver/ScalarSolver.py#L113
self.scalarized_objective = scalarized_objective self.problem = problem self.lower_bounds = [var.get_bounds()[0] for var in self.problem.variables] self.upper_bounds = [var.get_bounds()[1] for var in self.problem.variables] var_types = np.array( - [ - "I" if var.type.lower() in ["i", "integervariable", "integer"] else "R" - for var in problem.variables - ] + ["I" if var.type.lower() in ["i", "integervariable", "integer"] else "R" for var in problem.variables] ) self.var_types = var_types self.minlp_solver_path = minlp_solver_path print("Scalarized objectives: ", self.scalarized_objective)
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/solver/ScalarSolver.py#L211
self.problem = problem self._constraint_evaluator = constraint_evaluator if method is None or method == "MixedIntegerMinimizer": # Check if problem contains integer variables - integer_vars = any( - [ - var.type.lower() in ["i", "integervariable", "integer"] - for var in problem.variables - ] - ) + integer_vars = any([var.type.lower() in ["i", "integervariable", "integer"] for var in problem.variables]) if integer_vars: # Use MixedIntegerMinimizer if integer variables are found minlp_solver_path = kwargs.get("minlp_solver_path", None) if minlp_solver_path is None: raise ValueError(
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/solver/ScalarSolver.py#L228
) self._use_scipy = False self._mixed_integer_minimizer = MixedIntegerMinimizer( self._scalarizer, problem, minlp_solver_path=minlp_solver_path ) - self._method = ScalarMethod( - lambda x, _, **y: self._mixed_integer_minimizer.minimize(x, **y) - ) + self._method = ScalarMethod(lambda x, _, **y: self._mixed_integer_minimizer.minimize(x, **y)) elif (method is None) or (method == "scipy_minimize"): # scipy minimize self._use_scipy = True # Assuming the gradient reqruies evaluation of the
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/solver/ScalarSolver.py#L354
min_index = np.nanargmin(res) return {"x": min_index, "fun": min_value, "success": True} else: bad_con_mask = ~self._constraint_evaluator(vectors) if np.all(bad_con_mask): - raise ScalarSolverException( - "None of the supplied vectors adhere to the given " - "constraint function." - ) + raise ScalarSolverException("None of the supplied vectors adhere to the given " "constraint function.") tmp = np.copy(vectors) tmp[bad_con_mask] = np.nan res = self._scalarizer(tmp) min_value = np.nanmin(res) min_index = np.nanargmin(res)
/home/runner/work/desdeo-tools/desdeo-tools/tests/conftest.py#L4
@pytest.fixture def SimpleVectorValuedFunction(xs: np.ndarray): """A simple vector valued function for testing. - + Args: xs (np.ndarray): A 2D numpy array with argument vectors as its rows. Each vector consists of four values. - + Returns: np.ndarray: A 2D array with function evaluation results for each of the argument vectors on its rows. Each row contains three values. """ f1 = xs[:, 0] + xs[:, 1]
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/utilities/polytopes.py#L5
from typing import Optional from scipy.optimize import linprog -def inherently_nondominated( - A: np.ndarray, epsilon: Optional[float] = 1e-06, method: Optional[str] = "highs" -) -> bool: +def inherently_nondominated(A: np.ndarray, epsilon: Optional[float] = 1e-06, method: Optional[str] = "highs") -> bool: """Check if a polytope is inherently nondominated: A polytope is inherently nondominated iff the polytope does not dominate itself. Args: A (np.ndarray): A polytope to be checked.
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/utilities/polytopes.py#L61
A2 = np.hstack((np.zeros((1, 1)), np.ones((1, a)), np.zeros((1, b)))) A3 = np.hstack((np.zeros((1, 1)), np.zeros((1, a)), np.ones((1, b)))) A_ub = np.vstack((A1, np.zeros((2, a + b + 1)))) b_ub = np.zeros(k + 2) - A_eq = np.vstack( - (np.zeros((k, a + b + 1)), A2, A3) - ) # Add k rows for correct size, will be ignored + A_eq = np.vstack((np.zeros((k, a + b + 1)), A2, A3)) # Add k rows for correct size, will be ignored b_eq = np.hstack((np.zeros(k), np.ones(2))) res = linprog(coef, A_ub, b_ub, A_eq, b_eq, bounds, method=method) if not res["success"]:
/home/runner/work/desdeo-tools/desdeo-tools/desdeo_tools/utilities/polytopes.py#L121
for j in range(2, b + 1): # All combinations of size j from row i addition = np.array(list(itertools.combinations(simplices[i], j))) # Add all combinations to F, so that we repeat the value at index 0 until enough values chunks = addition[:, 0].shape[0] # How many chunks to split into - repeated = np.split( - np.repeat(addition[:, 0], b - j), chunks - ) # Repeat the values at index 0 + repeated = np.split(np.repeat(addition[:, 0], b - j), chunks) # Repeat the values at index 0 addition = np.hstack((addition, repeated)) # Add the repeated values F = np.vstack((F, addition)) # Add new rows to F # F(F(:,1)==0,:) = []; ? return np.unique(F, axis=0).astype(int)
Run linters
Process completed with exit code 1.
Run linters
Node.js 16 actions are deprecated. Please update the following actions to use Node.js 20: actions/checkout@v2, actions/setup-python@v1, wearerequired/lint-action@v1, actions/checkout@v3. For more information see: https://github.blog/changelog/2023-09-22-github-actions-transitioning-from-node-16-to-node-20/.
Run linters
The following actions uses node12 which is deprecated and will be forced to run on node16: actions/checkout@v2, actions/setup-python@v1, wearerequired/lint-action@v1. For more info: https://github.blog/changelog/2023-06-13-github-actions-all-actions-will-run-on-node16-instead-of-node12-by-default/
Run linters
Unexpected input(s) 'isort', 'isort_args', valid inputs are ['github_token', 'continue_on_error', 'auto_fix', 'git_no_verify', 'git_name', 'git_email', 'commit_message', 'check_name', 'neutral_check_on_warning', 'stylelint', 'stylelint_args', 'stylelint_dir', 'stylelint_extensions', 'stylelint_command_prefix', 'gofmt', 'gofmt_args', 'gofmt_dir', 'gofmt_extensions', 'gofmt_command_prefix', 'golint', 'golint_args', 'golint_dir', 'golint_extensions', 'golint_command_prefix', 'eslint', 'eslint_args', 'eslint_dir', 'eslint_extensions', 'eslint_command_prefix', 'prettier', 'prettier_args', 'prettier_dir', 'prettier_extensions', 'prettier_command_prefix', 'xo', 'xo_args', 'xo_dir', 'xo_extensions', 'xo_command_prefix', 'php_codesniffer', 'php_codesniffer_args', 'php_codesniffer_dir', 'php_codesniffer_extensions', 'php_codesniffer_command_prefix', 'black', 'black_args', 'black_dir', 'black_extensions', 'black_command_prefix', 'flake8', 'flake8_args', 'flake8_dir', 'flake8_extensions', 'flake8_command_prefix', 'mypy', 'mypy_args', 'mypy_dir', 'mypy_extensions', 'mypy_command_prefix', 'oitnb', 'oitnb_args', 'oitnb_dir', 'oitnb_extensions', 'oitnb_command_prefix', 'rubocop', 'rubocop_args', 'rubocop_dir', 'rubocop_extensions', 'rubocop_command_prefix', 'erblint', 'erblint_args', 'erblint_dir', 'erblint_extensions', 'erblint_command_prefix', 'swiftformat', 'swiftformat_args', 'swiftformat_dir', 'swiftformat_extensions', 'swiftformat_command_prefix', 'swift_format_lockwood', 'swift_format_lockwood_args', 'swift_format_lockwood_dir', 'swift_format_lockwood_extensions', 'swift_format_lockwood_command_prefix', 'swift_format_official', 'swift_format_official_args', 'swift_format_official_dir', 'swift_format_official_extensions', 'swift_format_official_command_prefix', 'swiftlint', 'swiftlint_args', 'swiftlint_dir', 'swiftlint_extensions', 'swiftlint_command_prefix', 'dotnet_format', 'dotnet_format_args', 'dotnet_format_dir', 'dotnet_format_extensions', 'dotnet_format_command_prefix']