forked from spm/spm12
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspm_Gpdf.m
101 lines (92 loc) · 3.35 KB
/
spm_Gpdf.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
function f = spm_Gpdf(x,h,l)
% Probability Density Function (PDF) of Gamma distribution
% FORMAT f = spm_Gpdf(x,h,l)
%
% x - Gamma-variate (Gamma has range [0,Inf) )
% h - Shape parameter (h>0)
% l - Scale parameter (l>0)
% f - PDF of Gamma-distribution with shape & scale parameters h & l
%__________________________________________________________________________
%
% spm_Gpdf implements the Probability Density Function of the Gamma
% distribution.
%
% Definition:
%--------------------------------------------------------------------------
% The PDF of the Gamma distribution with shape parameter h and scale l
% is defined for h>0 & l>0 and for x in [0,Inf) by: (See Evans et al.,
% Ch18, but note that this reference uses the alternative
% parameterisation of the Gamma with scale parameter c=1/l)
%
% l^h * x^(h-1) exp(-lx)
% f(x) = ----------------------
% gamma(h)
%
% Variate relationships: (Evans et al., Ch18 & Ch8)
%--------------------------------------------------------------------------
% For natural (strictly +ve integer) shape h this is an Erlang distribution.
%
% The Standard Gamma distribution has a single parameter, the shape h.
% The scale taken as l=1.
%
% The Chi-squared distribution with v degrees of freedom is equivalent
% to the Gamma distribution with scale parameter 1/2 and shape parameter v/2.
%
% Algorithm:
%--------------------------------------------------------------------------
% Direct computation using logs to avoid roundoff errors.
%
% References:
%--------------------------------------------------------------------------
% Evans M, Hastings N, Peacock B (1993)
% "Statistical Distributions"
% 2nd Ed. Wiley, New York
%
% Abramowitz M, Stegun IA, (1964)
% "Handbook of Mathematical Functions"
% US Government Printing Office
%
% Press WH, Teukolsky SA, Vetterling AT, Flannery BP (1992)
% "Numerical Recipes in C"
% Cambridge
%__________________________________________________________________________
% Copyright (C) 1993-2011 Wellcome Trust Centre for Neuroimaging
% Andrew Holmes
% $Id: spm_Gpdf.m 4182 2011-02-01 12:29:09Z guillaume $
%-Format arguments, note & check sizes
%--------------------------------------------------------------------------
if nargin<3, error('Insufficient arguments'), end
ad = [ndims(x);ndims(h);ndims(l)];
rd = max(ad);
as = [[size(x),ones(1,rd-ad(1))];...
[size(h),ones(1,rd-ad(2))];...
[size(l),ones(1,rd-ad(3))]];
rs = max(as);
xa = prod(as,2)>1;
if sum(xa)>1 && any(any(diff(as(xa,:)),1))
error('non-scalar args must match in size');
end
%-Computation
%--------------------------------------------------------------------------
%-Initialise result to zeros
f = zeros(rs);
%-Only defined for strictly positive h & l. Return NaN if undefined.
md = ( ones(size(x)) & h>0 & l>0 );
if any(~md(:))
f(~md) = NaN;
warning('Returning NaN for out of range arguments');
end
%-Degenerate cases at x==0: h<1 => f=Inf; h==1 => f=l; h>1 => f=0
ml = ( md & x==0 & h<1 );
f(ml) = Inf;
ml = ( md & x==0 & h==1 ); if xa(3), mll=ml; else mll=1; end
f(ml) = l(mll);
%-Compute where defined and x>0
Q = find( md & x>0 );
if isempty(Q), return, end
if xa(1), Qx=Q; else Qx=1; end
if xa(2), Qh=Q; else Qh=1; end
if xa(3), Ql=Q; else Ql=1; end
%-Compute
f(Q) = exp( (h(Qh)-1).*log(x(Qx)) +h(Qh).*log(l(Ql)) - l(Ql).*x(Qx)...
-gammaln(h(Qh)) );