Skip to content

Latest commit

 

History

History
72 lines (61 loc) · 2.26 KB

README.md

File metadata and controls

72 lines (61 loc) · 2.26 KB

Related Memory Network (RMN)

  • End-to-End neural network architecture exploiting both memory network and relation network structures
  • State-of-the-art result in jointly trained bAbI-10k story-based question answering

Result

Task MemN2N DMN+ RN RMN
1 0.0 0.0 0.0 0.0
2 0.3 0.3 6.5 0.5
3 9.3 1.1 12.9 14.7
4 0.0 0.0 0.0 0.0
5 0.6 0.5 0.5 0.4
6 0.0 0.0 0.0 0.0
7 3.7 2.4 0.2 0.5
8 0.8 0.0 0.1 0.3
9 0.8 0.0 0.0 0.0
10 2.4 0.0 0.0 0.0
11 0.0 0.0 0.4 0.5
12 0.0 0.0 0.0 0.0
13 0.0 0.0 0.0 0.0
14 0.0 0.0 0.0 0.0
15 0.0 0.0 0.0 0.0
16 0.4 45.3 50.3 0.9
17 40.7 4.2 0.9 0.3
18 6.7 2.1 0.6 2.3
19 66.5 0.0 2.1 2.9
20 0.0 0.0 0.0 0.0
Mean error 6.6 2.8 3.7 1.2
Failed tasks 4 1 3 1

Prerequisites

  • Python 3.6
  • Tensorflow 1.3.0
  • dependencies
    • pip install tqdm colorlog

Usage

1. prepare data

To process bAbI story-based QA dataset, run:

$ python preprocessor.py --data story

To process bAbI dialog dataset, run:

$ python preprocessor.py --data dialog

2. train model

To train RMN on bAbI story-based QA dataset, run:

$ python ./babi_story/train.py  

To train RMN on bAbI dialog dataset task 4, run:

$ python ./babi_dialog/train.py --task 4 --embedding concat --word_embed_dim 50

To use match, use_match flag is required:

$ python ./babi_dialog/train.py --task 4 --use_match True --embedding concat --word_embed_dim 50

To test on OOV dataset, is_oov flag is required:

$ python ./babi_dialog/train.py --task 4 --is_oov True --embedding concat --word_embed_dim 50