-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsimpleneuralnetwork.py
122 lines (93 loc) · 3.47 KB
/
simpleneuralnetwork.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# -*- coding: utf-8 -*-
"""SimpleNeuralNetwork.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1fceFEehlxPsE2xSvCo206v-tT097dbXx
"""
### This is a simple neural network that is able to predict how fast a person
### can sprint based on their age and weight
import torch
import torch.nn as nn
# DATA
# ------
# Note: tensor = vector
X = torch.tensor(([22, 180], [30, 155], [21, 205], [27, 190], [25, 160]), dtype=torch.float) # 5 X 3 tensor
y = torch.tensor(([16], [12], [9], [14], [15]), dtype=torch.float) # 5 X 1 tensor
# The single input that we want to use to predict if they will get the job
# using parameters learned from the neural network
xPredicted = torch.tensor(([18, 165]), dtype=torch.float) # 1 X 3 tensor
# SCALING THE DATA
# ------------------
# Gets the maximum value in a tensor
X_max, _ = torch.max(X, 0)
xPredicted_max, _ = torch.max(xPredicted, 0)
# Function to divide two tensors
X = torch.div(X, X_max)
xPredicted = torch.div(xPredicted, xPredicted_max)
y = y / 20
# COMPUTATION MODEL
# ------------------
# Class header that says we are defining a neural network
class Neural_Network(nn.Module):
# Performed upon creating instance of neural network
def __init__(self, ):
super(Neural_Network, self).__init__()
# parameters
self.inputSize = 2
self.outputSize = 1
self.hiddenSize = 3
# weight matrices
self.weight1 = torch.randn(self.inputSize, self.hiddenSize)
self.weight2 = torch.randn(self.hiddenSize, self.outputSize)
# This is where data enters and is fed into computation graph
#
# Takes input X and performs matrix multiplication with weight1
# The result is applied a SIGMOID (activation function)
#
# This result is multiplied with weight2
# The result is applied a SIGMOID (activation function) again
# = output of the neural network
#
# This is called a --FORWARD PASS--
def forward(self, X):
self.z = torch.matmul(X, self.weight1)
self.z2 = self.sigmoid(self.z) # activation function
self.z3 = torch.matmul(self.z2, self.weight2)
o = self.sigmoid(self.z3) # final activation function
return o
# Backpropagation algorithm, used to optimize the weights when training
#
# We want to MINIMIZE loss with respect to our weights
#
def backward(self, X, y, o):
self.o_error = y - o # error in output
self.o_delta = self.o_error * self.sigmoidPrime(o)
self.z2_error = torch.matmul(self.o_delta, torch.t(self.weight2))
self.z2_delta = self.z2_error * self.sigmoidPrime(self.z2)
self.weight1 += torch.matmul(torch.t(X), self.z2_delta)
self.weight2 += torch.matmul(torch.t(self.z2), self.o_delta)
# Sigmoid function
def sigmoid(self, s):
return 1 / (1 + torch.exp(-s))
#Sigmoid prime
def sigmoidPrime(self, s):
return s * (1 - s)
def train(self, X, y):
o = self.forward(X)
self.backward(X, y, o)
def saveWeights(self, model):
torch.save(model, "NN")
def predict(self):
print ("Predicted data based on trained weights: ")
print ("Input (scaled): \n" + str(xPredicted))
# print ("Output: \n" + str(self.forward(xPredicted)))
print ("Output: \n" + str(self.forward(xPredicted)[0] * 20))
# TRAIN
# ------
NN = Neural_Network()
# We will train the neural network 1000 times
for i in range(1000):
print ("#" + str(i) + " Loss: " + str(torch.mean((y - NN(X))**2).detach().item()))
NN.train(X, y)
NN.saveWeights(NN)
NN.predict()