Skip to content

Commit

Permalink
Fixed bugs regarding KV compression
Browse files Browse the repository at this point in the history
  • Loading branch information
SANKHA1 authored Nov 3, 2024
1 parent 85a5bea commit c416463
Showing 1 changed file with 2 additions and 214 deletions.
216 changes: 2 additions & 214 deletions python/llm/src/ipex_llm/transformers/models/chatglm2.py
Original file line number Diff line number Diff line change
Expand Up @@ -183,7 +183,7 @@ def chatglm2_encoder_forward(
if not kv_caches and not use_compress_kv:
kv_caches = [None for _ in range(self.num_layers)]
presents = () if use_cache else None
if hasattr(self, "gradient_checkpointing") and self.gradient_checkpointing and self.training:
if self.gradient_checkpointing and self.training:
use_cache = False

all_self_attentions = None
Expand All @@ -193,8 +193,7 @@ def chatglm2_encoder_forward(
all_hidden_states = all_hidden_states + (hidden_states,)

layer = self._get_layer(index)
if hasattr(self, "gradient_checkpointing") and self.gradient_checkpointing \
and self.training:
if self.gradient_checkpointing and self.training:
layer_ret = torch.utils.checkpoint.checkpoint(
layer,
hidden_states,
Expand Down Expand Up @@ -359,214 +358,3 @@ def chatglm2_attention_forward(
output = self.dense(attn_output)

return output, past_key_value


@torch.jit.script
def apply_rotary_pos_emb_original(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
# x: [sq, b, np, hn]
sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
rot_dim = rope_cache.shape[-2] * 2
x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
# truncate to support variable sizes
rope_cache = rope_cache[:sq]
xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
x_out2 = torch.stack(
[
xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
],
-1,
)
x_out2 = x_out2.flatten(3)
return torch.cat((x_out2, x_pass), dim=-1)


def codegeex_model_forward(
self,
input_ids,
position_ids: Optional[torch.Tensor]=None,
attention_mask: Optional[torch.BoolTensor]=None,
full_attention_mask: Optional[torch.BoolTensor]=None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]=None,
inputs_embeds: Optional[torch.Tensor]=None,
use_cache: Optional[bool]=None,
output_hidden_states: Optional[bool]=None,
return_dict: Optional[bool]=None,
):
output_hidden_states = (
output_hidden_states if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict

if inputs_embeds is None:
batch_size, seq_length = input_ids.shape
inputs_embeds = self.embedding(input_ids)
else:
inputs_embeds = inputs_embeds.transpose(0, 1).contiguous()
seq_length, batch_size, _ = inputs_embeds.shape
input_ids = torch.empty((batch_size, seq_length),
dtype=inputs_embeds.dtype, device=inputs_embeds.device)

if full_attention_mask is None:
if (attention_mask is not None and not attention_mask.all()) or (
past_key_values and seq_length != 1):
full_attention_mask = self.get_masks(input_ids,
past_key_values,
padding_mask=attention_mask)

# ipex-llm changes begin
# 1. replace `rotary_pos_emb` with `inv_freq` and `position_ids`
# 2. generate `causal_mask` and replace `full_attention_mask` with it
if position_ids is None:
if past_key_values is None:
position_ids = torch.arange(seq_length, dtype=torch.int64, device=inputs_embeds.device)
else:
if isinstance(past_key_values, DynamicCompressCache):
kv_length = past_key_values.get_seq_length()
else:
kv_length = past_key_values[0][0].size(0)
position_ids = torch.arange(kv_length, kv_length + seq_length,
dtype=torch.int64, device=inputs_embeds.device)
position_ids = position_ids.repeat(batch_size, 1)
use_fuse_rope = input_ids.device.type == "xpu" and not self.training

# Rotary positional embeddings
rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
if position_ids is not None:
rotary_pos_emb = rotary_pos_emb[position_ids]
else:
rotary_pos_emb = rotary_pos_emb[None, :seq_length]
if use_fuse_rope:
# Repeat cos sin here, call only once for each token.
# Chatglm2's rotary embedding is similar to gptj's, is rotate_every_two.
# If put this to attension forward, it will generate too many times.
cos, sin = rotary_pos_emb.split(rotary_pos_emb.shape[-1] // 2, dim=-1)
cos = cos.squeeze(-1)
sin = sin.squeeze(-1)
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
rotary_pos_emb = (cos, sin)
else:
rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()

# `full_attention_mask` is not None only when
# `past_key_values` is not None and `seq_length` > 1
if full_attention_mask is not None:
causal_mask = torch.zeros([batch_size, 1, seq_length, full_attention_mask.size(-1)],
dtype=inputs_embeds.dtype, device=inputs_embeds.device)
mask_value = torch.finfo(inputs_embeds.dtype).min
causal_mask.masked_fill_(full_attention_mask, mask_value)
elif self.training or (inputs_embeds.device.type != "xpu" and past_key_values is None):
full_attention_mask = self.get_masks(input_ids,
past_key_values,
padding_mask=attention_mask)
causal_mask = torch.zeros([batch_size, 1, seq_length, full_attention_mask.size(-1)],
dtype=inputs_embeds.dtype, device=inputs_embeds.device)
mask_value = torch.finfo(inputs_embeds.dtype).min
causal_mask.masked_fill_(full_attention_mask, mask_value)
else:
causal_mask = None

# Run encoder.
hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
inputs_embeds, causal_mask,
rotary_pos_emb=rotary_pos_emb,
kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
)
# ipex-llm changes end

if not return_dict:
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions]
if v is not None)

return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)


def codegeex_attention_forward(
self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
):
q_len, bsz, _ = hidden_states.size()
n_head = self.num_attention_heads_per_partition
n_kv_head = self.num_multi_query_groups_per_partition if self.multi_query_attention else n_head
head_dim = self.hidden_size_per_attention_head

past_key_value = None if kv_cache is None else (kv_cache[0].permute(1, 2, 0, 3),
kv_cache[1].permute(1, 2, 0, 3))
qkv = self.query_key_value(hidden_states)
qkv = qkv.view(q_len, bsz, n_head + 2 * n_kv_head, head_dim)
# [seq_len, bsz, n_head, head_dim] -> [bsz, n_head, seq_len, head_dim]
qkv = qkv.permute(1, 2, 0, 3)
query_layer, key_layer, value_layer = qkv.split([n_head,
n_kv_head,
n_kv_head], dim=1)
kv_seq_len = key_layer.shape[2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[2]

# apply relative positional encoding (rotary embedding)
if len(rotary_pos_emb) == 2 and isinstance(rotary_pos_emb, tuple):
cos, sin = rotary_pos_emb
rot_dim = cos.shape[-1]
query_layer = query_layer.transpose(1, 2)
key_layer = key_layer.transpose(1, 2)
query_layer_cur = query_layer[..., :rot_dim]
key_layer_cur = key_layer[..., :rot_dim]
# ipex_llm's apply_rotary_embedding can change the origin storage,
# so query_layer will get the result directly.
torch.ops.torch_ipex.apply_rotary_embedding(query_layer_cur, sin, cos, query_layer_cur)
torch.ops.torch_ipex.apply_rotary_embedding(key_layer_cur, sin, cos, key_layer_cur)
query_layer = query_layer.transpose(1, 2)
key_layer = key_layer.transpose(1, 2)
else:
query_layer = apply_rotary_pos_emb_original(query_layer, rotary_pos_emb)
key_layer = apply_rotary_pos_emb_original(key_layer, rotary_pos_emb)

key_layer, value_layer = update_past_key_value(
past_key_value, key_layer, value_layer,
kv_seq_len, False, hidden_states.device
)
# past_key_value: [bsz, n_kv_head, seq_len, head_dim] -> [seq_len, bsz, n_kv_head, head_dim]
past_key_value = (key_layer.permute(2, 0, 1, 3),
value_layer.permute(2, 0, 1, 3)) if use_cache else None

# =================
# Output. [sq, b, h]
# =================
context_layer = None
if use_sdp(q_len, kv_seq_len, head_dim, query_layer):
import xe_addons
context_layer = xe_addons.sdp(query_layer, key_layer, value_layer, attention_mask)
elif use_sdp_causal(q_len, kv_seq_len, head_dim, query_layer, self.training):
import xe_addons
context_layer = xe_addons.sdp_causal(query_layer, key_layer, value_layer, attention_mask)
else:
# repeat k/v heads if n_kv_heads < n_heads
key_layer = repeat_kv(key_layer, n_head // n_kv_head)
value_layer = repeat_kv(value_layer, n_head // n_kv_head)
if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer,
key_layer,
value_layer,
is_causal=True)
else:
if attention_mask is not None:
attention_mask = ~attention_mask
context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer,
key_layer,
value_layer,
attention_mask)

context_layer = context_layer.permute(2, 0, 1, 3).contiguous().view(q_len,
bsz,
n_head * head_dim)
output = self.dense(context_layer)

return output, past_key_value

0 comments on commit c416463

Please sign in to comment.