Skip to content

Commit

Permalink
[NPU L0] Update streaming mode of example (#12312)
Browse files Browse the repository at this point in the history
  • Loading branch information
plusbang authored Nov 1, 2024
1 parent 126f95b commit d409d9d
Show file tree
Hide file tree
Showing 7 changed files with 83 additions and 62 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -72,28 +72,21 @@ Arguments info:
- `--max-context-len MAX_CONTEXT_LEN`: Defines the maximum sequence length for both input and output tokens. It is default to be `1024`.
- `--max-prompt-len MAX_PROMPT_LEN`: Defines the maximum number of tokens that the input prompt can contain. It is default to be `512`.
- `--disable-transpose-value-cache`: Disable the optimization of transposing value cache.
- `--disable-streaming`: Disable streaming mode of generation.

### Sample Output
### Sample Output of Streaming Mode
#### [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf)

```log
Number of input tokens: 28
Generated tokens: 32
First token generation time: xxxx s
Generation average latency: xxxx ms, (xxxx token/s)
Generation time: xxxx s
Inference time: xxxx s
-------------------- Input --------------------
<s><s> [INST] <<SYS>>
input length: 28
<s>[INST] <<SYS>>
<</SYS>>
What is AI? [/INST]
-------------------- Output --------------------
<s><s> [INST] <<SYS>>
AI (Artificial Intelligence) is a field of computer science and technology that focuses on the development of intelligent machines that can perform
<</SYS>>
What is AI? [/INST] AI (Artificial Intelligence) is a field of computer science and technology that focuses on the development of intelligent machines that can perform
Inference time: xxxx s
```
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
import time
import argparse
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
from transformers import AutoTokenizer
from transformers import AutoTokenizer, TextStreamer
from transformers.utils import logging

logger = logging.get_logger(__name__)
Expand Down Expand Up @@ -61,6 +61,7 @@ def get_prompt(message: str, chat_history: list[tuple[str, str]],
parser.add_argument("--max-context-len", type=int, default=1024)
parser.add_argument("--max-prompt-len", type=int, default=512)
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
parser.add_argument("--disable-streaming", action="store_true", default=False)

args = parser.parse_args()
model_path = args.repo_id_or_model_path
Expand Down Expand Up @@ -92,29 +93,34 @@ def get_prompt(message: str, chat_history: list[tuple[str, str]],
if args.lowbit_path and not os.path.exists(args.lowbit_path):
model.save_low_bit(args.lowbit_path)

if args.disable_streaming:
streamer = None
else:
streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)

DEFAULT_SYSTEM_PROMPT = """\
"""

print("-" * 80)
print("done")
with torch.inference_mode():
print("finish to load")
for i in range(5):
for i in range(3):
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
print("-" * 20, "Input", "-" * 20)
print("input length:", len(_input_ids[0]))
print(prompt)
print("-" * 20, "Output", "-" * 20)
st = time.time()
output = model.generate(
_input_ids, max_new_tokens=args.n_predict, do_print=True
_input_ids, max_new_tokens=args.n_predict, streamer=streamer
)
end = time.time()
if args.disable_streaming:
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print(output_str)
print(f"Inference time: {end-st} s")
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
print("-" * 20, "Input", "-" * 20)
print(input_str)
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print("-" * 20, "Output", "-" * 20)
print(output_str)

print("-" * 80)
print("done")
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
import time
import argparse
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
from transformers import AutoTokenizer
from transformers import AutoTokenizer, TextStreamer
from transformers.utils import logging

logger = logging.get_logger(__name__)
Expand Down Expand Up @@ -62,6 +62,7 @@ def get_prompt(message: str, chat_history: list[tuple[str, str]],
parser.add_argument("--max-prompt-len", type=int, default=512)
parser.add_argument("--quantization_group_size", type=int, default=0)
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
parser.add_argument("--disable-streaming", action="store_true", default=False)

args = parser.parse_args()
model_path = args.repo_id_or_model_path
Expand Down Expand Up @@ -91,6 +92,11 @@ def get_prompt(message: str, chat_history: list[tuple[str, str]],

if args.lowbit_path and not os.path.exists(args.lowbit_path):
model.save_low_bit(args.lowbit_path)

if args.disable_streaming:
streamer = None
else:
streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)

DEFAULT_SYSTEM_PROMPT = """\
"""
Expand All @@ -99,22 +105,22 @@ def get_prompt(message: str, chat_history: list[tuple[str, str]],
print("done")
with torch.inference_mode():
print("finish to load")
for i in range(5):
for i in range(3):
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
print("-" * 20, "Input", "-" * 20)
print("input length:", len(_input_ids[0]))
print(prompt)
print("-" * 20, "Output", "-" * 20)
st = time.time()
output = model.generate(
_input_ids, max_new_tokens=args.n_predict, do_print=True
_input_ids, max_new_tokens=args.n_predict, streamer=streamer
)
end = time.time()
if args.disable_streaming:
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print(output_str)
print(f"Inference time: {end-st} s")
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
print("-" * 20, "Input", "-" * 20)
print(input_str)
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print("-" * 20, "Output", "-" * 20)
print(output_str)

print("-" * 80)
print("done")
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
import time
import argparse
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
from transformers import AutoTokenizer
from transformers import AutoTokenizer, TextStreamer
from transformers.utils import logging

logger = logging.get_logger(__name__)
Expand Down Expand Up @@ -68,6 +68,7 @@ def get_prompt(user_input: str, chat_history: list[tuple[str, str]],
parser.add_argument("--max-prompt-len", type=int, default=512)
parser.add_argument("--quantization_group_size", type=int, default=0)
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
parser.add_argument("--disable-streaming", action="store_true", default=False)

args = parser.parse_args()
model_path = args.repo_id_or_model_path
Expand Down Expand Up @@ -98,26 +99,31 @@ def get_prompt(user_input: str, chat_history: list[tuple[str, str]],
if args.lowbit_path and not os.path.exists(args.lowbit_path):
model.save_low_bit(args.lowbit_path)

if args.disable_streaming:
streamer = None
else:
streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)

print("-" * 80)
print("done")
with torch.inference_mode():
print("finish to load")
for i in range(5):
for i in range(3):
prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
print("-" * 20, "Input", "-" * 20)
print("input length:", len(_input_ids[0]))
print(prompt)
print("-" * 20, "Output", "-" * 20)
st = time.time()
output = model.generate(
_input_ids, max_new_tokens=args.n_predict, do_print=True
_input_ids, max_new_tokens=args.n_predict, streamer=streamer
)
end = time.time()
if args.disable_streaming:
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print(output_str)
print(f"Inference time: {end-st} s")
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
print("-" * 20, "Input", "-" * 20)
print(input_str)
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print("-" * 20, "Output", "-" * 20)
print(output_str)

print("-" * 80)
print("done")
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
import time
import argparse
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
from transformers import AutoTokenizer
from transformers import AutoTokenizer, TextStreamer
from transformers.utils import logging
import os

Expand Down Expand Up @@ -48,6 +48,7 @@
parser.add_argument("--max-context-len", type=int, default=1024)
parser.add_argument("--max-prompt-len", type=int, default=512)
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
parser.add_argument("--disable-streaming", action="store_true", default=False)

args = parser.parse_args()
model_path = args.repo_id_or_model_path
Expand Down Expand Up @@ -79,26 +80,31 @@
if args.lowbit_path and not os.path.exists(args.lowbit_path):
model.save_low_bit(args.lowbit_path)

if args.disable_streaming:
streamer = None
else:
streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)

print("-" * 80)
print("done")
with torch.inference_mode():
print("finish to load")
for i in range(5):
for i in range(3):
prompt = "<用户>{}<AI>".format(args.prompt)
_input_ids = tokenizer.encode(prompt, return_tensors="pt")
print("-" * 20, "Input", "-" * 20)
print("input length:", len(_input_ids[0]))
print(prompt)
print("-" * 20, "Output", "-" * 20)
st = time.time()
output = model.generate(
_input_ids, max_new_tokens=args.n_predict, do_print=True
_input_ids, max_new_tokens=args.n_predict, streamer=streamer
)
end = time.time()
if args.disable_streaming:
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print(output_str)
print(f"Inference time: {end-st} s")
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
print("-" * 20, "Input", "-" * 20)
print(input_str)
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print("-" * 20, "Output", "-" * 20)
print(output_str)

print("-" * 80)
print("done")
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
import time
import argparse
from ipex_llm.transformers.npu_model import AutoModelForCausalLM
from transformers import AutoTokenizer
from transformers import AutoTokenizer, TextStreamer
from transformers.utils import logging

logger = logging.get_logger(__name__)
Expand Down Expand Up @@ -50,6 +50,7 @@
parser.add_argument('--load_in_low_bit', type=str, default="sym_int4",
help='Load in low bit to use')
parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False)
parser.add_argument("--disable-streaming", action="store_true", default=False)

args = parser.parse_args()
model_path = args.repo_id_or_model_path
Expand Down Expand Up @@ -81,6 +82,11 @@
if args.lowbit_path and not os.path.exists(args.lowbit_path):
model.save_low_bit(args.lowbit_path)

if args.disable_streaming:
streamer = None
else:
streamer = TextStreamer(tokenizer=tokenizer, skip_special_tokens=True)

print("-" * 80)
print("done")
messages = [{"role": "system", "content": "You are a helpful assistant."},
Expand All @@ -90,21 +96,21 @@
add_generation_prompt=True)
with torch.inference_mode():
print("finish to load")
for i in range(5):
for i in range(3):
_input_ids = tokenizer([text], return_tensors="pt").input_ids
print("-" * 20, "Input", "-" * 20)
print("input length:", len(_input_ids[0]))
print(text)
print("-" * 20, "Output", "-" * 20)
st = time.time()
output = model.generate(
_input_ids, max_new_tokens=args.n_predict, do_print=True
_input_ids, max_new_tokens=args.n_predict, streamer=streamer
)
end = time.time()
if args.disable_streaming:
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print(output_str)
print(f"Inference time: {end-st} s")
input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False)
print("-" * 20, "Input", "-" * 20)
print(input_str)
output_str = tokenizer.decode(output[0], skip_special_tokens=False)
print("-" * 20, "Output", "-" * 20)
print(output_str)

print("-" * 80)
print("done")
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -134,7 +134,6 @@ def generate(
try:
input_pipe = open(in_pipe_path, "wb")
except:
print('Waiting for input pipe')
time.sleep(1)
else:
break
Expand All @@ -143,7 +142,6 @@ def generate(
try:
output_pipe = open(out_pipe_path, "rb")
except:
print('Waiting for output pipe')
time.sleep(1)
else:
break
Expand All @@ -152,7 +150,7 @@ def generate(

bdata = str.encode(str(temp_dir))
invalidInputError(len(bdata) <= 2000,
f"Leng of input directory is too long ({len(bdata)}), "
f"Length of input directory is too long ({len(bdata)}), "
"which may cause read error.")
input_pipe.write(bdata)
input_pipe.flush()
Expand Down

0 comments on commit d409d9d

Please sign in to comment.