diff --git a/python/llm/example/GPU/PyTorch-Models/Model/llava/README.md b/python/llm/example/GPU/PyTorch-Models/Model/llava/README.md index 77e0f1cfd9c..fa75e826770 100644 --- a/python/llm/example/GPU/PyTorch-Models/Model/llava/README.md +++ b/python/llm/example/GPU/PyTorch-Models/Model/llava/README.md @@ -1,11 +1,11 @@ # LLaVA -In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API on LLaVA models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [liuhaotian/llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b) as a reference LLaVA model. +In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API to accelerate LLaVA models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [llava-hf/llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) as a reference LLaVA model. ## 0. Requirements To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. -## Example: Multi-turn chat centered around an image using `generate()` API -In the example [generate.py](./generate.py), we show a basic use case for a LLaVA model to start a multi-turn chat centered around an image using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs. +## Example: Predict Tokens using `generate()` API +In the example [generate.py](./generate.py), we show a basic use case for a LLaVA model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs. ### 1. Install #### 1.1 Installation on Linux We suggest using conda to manage environment: @@ -15,12 +15,7 @@ conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ -pip install einops # install dependencies required by llava - -git clone https://github.com/haotian-liu/LLaVA.git # clone the llava libary -cp generate.py ./LLaVA/ # copy our example to the LLaVA folder -cd LLaVA # change the working directory to the LLaVA folder -git checkout tags/v1.2.0 -b 1.2.0 # Get the branch which is compatible with transformers 4.36 +pip install transformers==4.43.0 ``` #### 1.2 Installation on Windows @@ -32,12 +27,7 @@ conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ -pip install einops # install dependencies required by llava - -git clone https://github.com/haotian-liu/LLaVA.git # clone the llava libary -copy generate.py .\LLaVA\ # copy our example to the LLaVA folder -cd LLaVA # change the working directory to the LLaVA folder -git checkout tags/v1.2.0 -b 1.2.0 # Get the branch which is compatible with transformers 4.36 +pip install transformers==4.43.0 ``` ### 2. Configures OneAPI environment variables for Linux @@ -116,42 +106,30 @@ set SYCL_CACHE_PERSISTENT=1 > For the first time that each model runs on Intel iGPU/Intel Arcâ„¢ A300-Series or Pro A60, it may take several minutes to compile. ### 4. Running examples -```bash -python ./generate.py --image-path-or-url 'https://llava-vl.github.io/static/images/monalisa.jpg' +``` +python ./generate.py ``` -In the example, several arguments can be passed to satisfy your requirements: - -- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the LLaVA model (e.g. `liuhaotian/llava-v1.5-7b` to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'liuhaotian/llava-v1.5-7b'`. -- `--image-path-or-url IMAGE_PATH_OR_URL`: argument defining the input image that the chat will focus on. It is required. -- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `512`. - -If you encounter some network error (which means your machine is unable to access huggingface.co) when running this example, refer to [Trouble Shooting](#4-trouble-shooting) section. - +Arguments info: +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the LLaVA model (e.g. `llava-hf/llava-1.5-7b-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'llava-hf/llava-1.5-7b-hf'`. +- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`. +- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'Describe image in detail'`. +- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. #### Sample Output -#### [liuhaotian/llava-v1.5-7b](https://huggingface.co/liuhaotian/llava-v1.5-7b) +#### [llava-hf/llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) ```log -USER: Do you know who drew this painting? -ASSISTANT: Yes, the painting is a portrait of a woman by Leonardo da Vinci. It's a famous artwork known as the "Mona Lisa." -USER: Can you describe this painting? -ASSISTANT: The painting features a well-detailed portrait of a woman, painted in oil on a canvas. The woman appears to be a young woman staring straight ahead in a direct gaze towards the viewer. The woman's facial features are rendered sharply in the brush strokes, giving her a lifelike, yet enigmatic expression. -The background of the image mainly showcases the woman's face, with some hills visible in the lower part of the painting. The artist employs a wide range of shades, evoking a sense of depth and realism in the subject matter. The technique used in this portrait sets it apart from other artworks during the Renaissance period, making it a notable piece in art history. +Inference time: xxxx s +-------------------- Input Image -------------------- +http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg +-------------------- Prompt -------------------- +Describe image in detail +-------------------- Output -------------------- + USER: +Describe image in detail ASSISTANT: The image features a young girl holding a white teddy bear in her hands. She is smiling and appears to be enjoying the moment. The girl is ``` -The sample input image is: - - - -### 5 Trouble shooting - -#### 5.1 SSLError -If you encounter the following output, it means your machine has some trouble accessing huggingface.co. -```log -requests.exceptions.SSLError: (MaxRetryError("HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /openai/clip-vit-large-patch14-336/resolve/main/config.json (Caused by SSLError(SSLZeroReturnError(6, 'TLS/SSL connection has been closed (EOF) (_ssl.c:1129)')))"), -``` +The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)): -You can resolve this problem with the following steps: -1. Download https://huggingface.co/openai/clip-vit-large-patch14-336 on some machine that can access huggingface.co, and put it in huggingface's local cache (default to be `~/.cache/huggingface/hub`) on the machine that you are going to run this example. -2. Set the environment variable (`export TRANSFORMERS_OFFLINE=1`) before you run the example. + \ No newline at end of file diff --git a/python/llm/example/GPU/PyTorch-Models/Model/llava/generate.py b/python/llm/example/GPU/PyTorch-Models/Model/llava/generate.py index 84c8b726650..b70e22541a9 100644 --- a/python/llm/example/GPU/PyTorch-Models/Model/llava/generate.py +++ b/python/llm/example/GPU/PyTorch-Models/Model/llava/generate.py @@ -13,328 +13,74 @@ # See the License for the specific language governing permissions and # limitations under the License. # -# Some parts of this file is adapted from -# https://github.com/haotian-liu/LLaVA/blob/v1.1.1/llava/model/builder.py -# and -# https://github.com/haotian-liu/LLaVA/blob/v1.1.1/llava/serve/cli.py -# -# Copyright 2023 Haotian Liu -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. import argparse -import torch -import time +import os -from transformers import AutoModelForCausalLM -from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM -from transformers import AutoTokenizer -from transformers import TextStreamer - -from llava.constants import ( - DEFAULT_IMAGE_PATCH_TOKEN, - IMAGE_TOKEN_INDEX, - DEFAULT_IMAGE_TOKEN, - DEFAULT_IM_START_TOKEN, - DEFAULT_IM_END_TOKEN -) -from llava.conversation import conv_templates, SeparatorStyle -from llava.utils import disable_torch_init -from llava.mm_utils import ( - process_images, - tokenizer_image_token, - get_model_name_from_path, - KeywordsStoppingCriteria -) +import requests +import time +import torch +from PIL import Image +from transformers import LlavaForConditionalGeneration, AutoProcessor from ipex_llm import optimize_model -# Load the pretrained model. -# Adapted from llava.model.builder.load_pretrained_model. -def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, - device_map="auto", device="cpu"): - kwargs = {"device_map": device_map} - - if 'llava' in model_name.lower(): - # Load LLaVA model - if 'lora' in model_name.lower() and model_base is None: - warnings.warn('There is `lora` in model name but no `model_base` is provided.' - 'If you are loading a LoRA model, please provide the `model_base` argument' - '. Detailed instruction:' - 'https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.') - if 'lora' in model_name.lower() and model_base is not None: - lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) - tokenizer = AutoTokenizer.from_pretrained( - model_base, use_fast=False) - print('Loading LLaVA from base model...') - model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, - config=lora_cfg_pretrained, **kwargs) - token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features - if model.lm_head.weight.shape[0] != token_num: - model.lm_head.weight = torch.nn.Parameter(torch.empty( - token_num, tokem_dim, device=model.device, dtype=model.dtype)) - model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty( - token_num, tokem_dim, device=model.device, dtype=model.dtype)) - - print('Loading additional LLaVA weights...') - if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')): - non_lora_trainables = torch.load(os.path.join(model_path, - 'non_lora_trainables.bin'), - map_location='cpu') - else: - # this is probably from HF Hub - from huggingface_hub import hf_hub_download - - def load_from_hf(repo_id, filename, subfolder=None): - cache_file = hf_hub_download( - repo_id=repo_id, - filename=filename, - subfolder=subfolder) - return torch.load(cache_file, map_location='cpu') - non_lora_trainables = load_from_hf( - model_path, 'non_lora_trainables.bin') - non_lora_trainables = {(k[11:] if k.startswith( - 'base_model.') else k): v for k, v in non_lora_trainables.items()} - if any(k.startswith('model.model.') for k in non_lora_trainables): - non_lora_trainables = {(k[6:] if k.startswith( - 'model.') else k): v for k, v in non_lora_trainables.items()} - model.load_state_dict(non_lora_trainables, strict=False) - - from peft import PeftModel - print('Loading LoRA weights...') - model = PeftModel.from_pretrained(model, model_path) - print('Merging LoRA weights...') - model = model.merge_and_unload() - print('Model is loaded...') - elif model_base is not None: - # this may be mm projector only - print('Loading LLaVA from base model...') - if 'mpt' in model_name.lower(): - if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')): - shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join( - model_path, 'configuration_mpt.py')) - tokenizer = AutoTokenizer.from_pretrained( - model_base, use_fast=True) - cfg_pretrained = AutoConfig.from_pretrained( - model_path, trust_remote_code=True) - model = LlavaMPTForCausalLM.from_pretrained( - model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) - else: - tokenizer = AutoTokenizer.from_pretrained( - model_base, use_fast=False) - cfg_pretrained = AutoConfig.from_pretrained(model_path) - model = LlavaLlamaForCausalLM.from_pretrained( - model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) - - mm_projector_weights = torch.load(os.path.join( - model_path, 'mm_projector.bin'), map_location='cpu') - mm_projector_weights = {k: v.to(torch.float32) - for k, v in mm_projector_weights.items()} - model.load_state_dict(mm_projector_weights, strict=False) - else: - if 'mpt' in model_name.lower(): - tokenizer = AutoTokenizer.from_pretrained( - model_path, use_fast=True) - model = LlavaMPTForCausalLM.from_pretrained( - model_path, low_cpu_mem_usage=True, **kwargs) - else: - tokenizer = AutoTokenizer.from_pretrained( - model_path, use_fast=False) - model = LlavaLlamaForCausalLM.from_pretrained( - model_path, low_cpu_mem_usage=True) - else: - # Load language model - if model_base is not None: - # PEFT model - from peft import PeftModel - tokenizer = AutoTokenizer.from_pretrained( - model_base, use_fast=False) - model = AutoModelForCausalLM.from_pretrained( - model_base, torch_dtype=torch.float32, low_cpu_mem_usage=True, device_map="auto") - print(f"Loading LoRA weights from {model_path}") - model = PeftModel.from_pretrained(model, model_path) - print(f"Merging weights") - model = model.merge_and_unload() - print('Convert to FP32...') - model.to(torch.float32) - else: - use_fast = False - if 'mpt' in model_name.lower(): - tokenizer = AutoTokenizer.from_pretrained( - model_path, use_fast=True) - model = AutoModelForCausalLM.from_pretrained( - model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs) - else: - tokenizer = AutoTokenizer.from_pretrained( - model_path, use_fast=False) - model = AutoModelForCausalLM.from_pretrained( - model_path, low_cpu_mem_usage=True, **kwargs) - - image_processor = None - - if 'llava' in model_name.lower(): - mm_use_im_start_end = getattr( - model.config, "mm_use_im_start_end", False) - mm_use_im_patch_token = getattr( - model.config, "mm_use_im_patch_token", True) - if mm_use_im_patch_token: - tokenizer.add_tokens( - [DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) - if mm_use_im_start_end: - tokenizer.add_tokens( - [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) - model.resize_token_embeddings(len(tokenizer)) - - vision_tower = model.get_vision_tower() - if not vision_tower.is_loaded: - vision_tower.load_model() - vision_tower.to(device=device, dtype=torch.float32) - image_processor = vision_tower.image_processor - - if hasattr(model.config, "max_sequence_length"): - context_len = model.config.max_sequence_length - else: - context_len = 2048 - - return tokenizer, model, image_processor, context_len - -# Initialize conversation from templates and get conversation roles. -def get_conv_and_role(model_name): - if 'llama-2' in model_name.lower(): - conv_mode = "llava_llama_2" - elif "v1" in model_name.lower(): - conv_mode = "llava_v1" - elif "mpt" in model_name.lower(): - conv_mode = "mpt" - else: - conv_mode = "llava_v0" - - conv = conv_templates[conv_mode].copy() - if "mpt" in model_name.lower(): - roles = ('user', 'assistant') - else: - roles = conv.roles - - return conv, roles - -# Load image from a url or path. -def load_image(image_file): - import requests - from PIL import Image - from io import BytesIO - - if image_file.startswith('http://') or image_file.startswith('https://'): - response = requests.get(image_file) - image = Image.open(BytesIO(response.content)).convert('RGB') - else: - image = Image.open(image_file).convert('RGB') - return image - -def generate_image_tensor(image_file): - image = load_image(image_file) - model_cfg = {"image_aspect_ratio": 'pad'} - image_tensor = process_images([image], image_processor, model_cfg) - return image_tensor - -# Generate input prompt with user input. -def get_prompt(mm_use_im_start_end, first_round, conv, user_input): - if first_round: - # first message - if mm_use_im_start_end: - user_input = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + \ - DEFAULT_IM_END_TOKEN + '\n' + user_input - else: - user_input = DEFAULT_IMAGE_TOKEN + '\n' + user_input - conv.append_message(conv.roles[0], user_input) - else: - # later messages - conv.append_message(conv.roles[0], user_input) - conv.append_message(conv.roles[1], None) - return conv.get_prompt() - -def get_stopping_criteria(conv, tokenizer, input_ids): - stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 - keywords = [stop_str] - stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) - return stopping_criteria - - if __name__ == '__main__': - parser = argparse.ArgumentParser( - description='Predict Tokens using `generate()` API for LLaVA model') - parser.add_argument('--repo-id-or-model-path', type=str, default="liuhaotian/llava-v1.5-7b", + parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for LLaVA model') + parser.add_argument('--repo-id-or-model-path', type=str, default="llava-hf/llava-1.5-7b-hf", help='The huggingface repo id for the LLaVA model to be downloaded' ', or the path to the huggingface checkpoint folder') - parser.add_argument('--image-path-or-url', type=str, - required=True, help='Image path or url for the input image that the chat will focus on') - parser.add_argument('--n-predict', type=int, default=512, - help='Max tokens to predict') - + parser.add_argument('--image-url-or-path', type=str, + default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg', + help='The URL or path to the image to infer') + parser.add_argument('--prompt', type=str, default="Describe image in detail", + help='Prompt to infer') + parser.add_argument('--n-predict', type=int, default=32, + help='Max tokens to predict') args = parser.parse_args() model_path = args.repo_id_or_model_path - model_name = get_model_name_from_path(model_path) - - # Disable the redundant torch default initialization to accelerate model creation. - disable_torch_init() - - # Load model - tokenizer, model, image_processor, _ = load_pretrained_model(model_path=model_path, - model_base=None, - model_name=model_name) - - # With only one line to enable IPEX-LLM optimization on model - # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the optimize_model function. - # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. - model = optimize_model(model).to('xpu') - - # Generate image tensor - image_tensor = generate_image_tensor(args.image_path_or_url) - - # Get conversation template and roles - conv, roles = get_conv_and_role(model_name) - - first_round = True - while True: - try: - user_input = input(f"{roles[0]}: ") - except EOFError: - user_input = "" - if not user_input: - print("exit...") - break - - print(f"{roles[1]}: ", end="") - - prompt = get_prompt(model.config.mm_use_im_start_end, first_round, conv, user_input) - first_round = False - input_ids = tokenizer_image_token( - prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to('xpu') - stopping_criteria = get_stopping_criteria(conv, tokenizer, input_ids) - streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) - - # Generate predicted tokens - with torch.inference_mode(): - st = time.time() - output_ids = model.generate( - input_ids, - images=image_tensor, - do_sample=True, - max_new_tokens=args.n_predict, - streamer=streamer, - use_cache=True, - stopping_criteria=[stopping_criteria]) - end = time.time() - #print(f'Inference time: {end-st} s') - - outputs = tokenizer.decode(output_ids[0, :].cpu(), skip_special_tokens=True).strip() - conv.messages[-1][-1] = outputs + image_path = args.image_url_or_path + prompt = args.prompt + + model = LlavaForConditionalGeneration.from_pretrained(model_path) + model = optimize_model(model, low_bit='sym_int4').eval() + model = model.half().to("xpu") + + processor = AutoProcessor.from_pretrained(model_path) + + # here the prompt tuning refers to https://huggingface.co/llava-hf/llava-1.5-7b-hf#using-pure-transformers + messages = [ + { + "role": "user", + "content": [ + {"type": "image"}, + {"type": "text", "text": prompt} + ] + } + ] + text = processor.apply_chat_template(messages, add_generation_prompt=True) + + if os.path.exists(image_path): + image = Image.open(image_path) + else: + image = Image.open(requests.get(image_path, stream=True).raw) + + inputs = processor(text=text, images=image, return_tensors="pt").to('xpu') + + with torch.inference_mode(): + # warmup + output = model.generate(**inputs, do_sample=False, max_new_tokens=args.n_predict) + + # start inference + st = time.time() + output = model.generate(**inputs, do_sample=False, max_new_tokens=args.n_predict) + et = time.time() + + output_str = processor.decode(output[0]) + print(f'Inference time: {et-st} s') + print('-'*20, 'Input Image', '-'*20) + print(image_path) + print('-'*20, 'Prompt', '-'*20) + print(prompt) + print('-'*20, 'Output', '-'*20) + print(output_str)