Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add dummy model in iGPU perf #12341

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
108 changes: 72 additions & 36 deletions python/llm/dev/benchmark/all-in-one/run.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,8 @@

MINICPM_V_IDS = ['openbmb/MiniCPM-V-2_6', 'openbmb/MiniCPM-Llama3-V-2_5']

DUMMY_IDS = ['dummy/dummy-1.5B', 'dummy/dummy-4B']

results = []
excludes = []

Expand Down Expand Up @@ -1245,6 +1247,10 @@ def run_transformer_int4_gpu_win(repo_id,
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to('xpu')
model = model.llm
elif repo_id in DUMMY_IDS:
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
model = model.to('xpu')
else:
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding).eval()
Expand All @@ -1255,7 +1261,10 @@ def run_transformer_int4_gpu_win(repo_id,
print(">> loading of model costs {}s and {}GB".format(load_time, torch.xpu.memory.memory_reserved()/(1024**3)))

model = BenchmarkWrapper(model)
streamer = TextStreamer(tokenizer, skip_prompt=True)
if repo_id not in DUMMY_IDS:
streamer = TextStreamer(tokenizer, skip_prompt=True)
else:
streaming = False

result = {}
with torch.inference_mode():
Expand All @@ -1264,14 +1273,17 @@ def run_transformer_int4_gpu_win(repo_id,
in_out_len = in_out.split("-")
in_len = int(in_out_len[0])
out_len = int(in_out_len[1])
input_str = get_continuation_input_str(in_len, tokenizer)
# As different tokenizer has different encodings,
# slice the input_ids to ensure the prompt length is required length.
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_list = [true_str] * batch_size
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
if repo_id not in DUMMY_IDS:
input_str = get_continuation_input_str(in_len, tokenizer)
# As different tokenizer has different encodings,
# slice the input_ids to ensure the prompt length is required length.
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_list = [true_str] * batch_size
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
else:
input_ids = torch.randint(1000, 2000, [batch_size, in_len], dtype=torch.int64).to('xpu')
actual_in_len = input_ids.shape[1]
result[in_out] = []
for i in range(num_trials + warm_up):
Expand All @@ -1288,9 +1300,10 @@ def run_transformer_int4_gpu_win(repo_id,
end = time.perf_counter()
output_ids = output_ids.cpu()
print("model generate cost: " + str(end - st))
output = tokenizer.batch_decode(output_ids)
if not streaming:
print(output[0])
if repo_id not in DUMMY_IDS:
output = tokenizer.batch_decode(output_ids)
if not streaming:
print(output[0])
actual_out_len = output_ids.shape[1] - actual_in_len
if i >= warm_up:
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
Expand Down Expand Up @@ -1369,6 +1382,11 @@ def run_transformer_int4_fp16_gpu_win(repo_id,
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to('xpu')
model = model.llm
elif repo_id in DUMMY_IDS:
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding,
torch_dtype=torch.float16).eval()
model = model.to('xpu')
else:
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
trust_remote_code=True, use_cache=True, cpu_embedding=cpu_embedding,
Expand All @@ -1380,7 +1398,10 @@ def run_transformer_int4_fp16_gpu_win(repo_id,
print(">> loading of model costs {}s and {}GB".format(load_time, torch.xpu.memory.memory_reserved()/(1024**3)))

model = BenchmarkWrapper(model)
streamer = TextStreamer(tokenizer, skip_prompt=True)
if repo_id not in DUMMY_IDS:
streamer = TextStreamer(tokenizer, skip_prompt=True)
else:
streaming = False

result = {}
with torch.inference_mode():
Expand All @@ -1389,14 +1410,17 @@ def run_transformer_int4_fp16_gpu_win(repo_id,
in_out_len = in_out.split("-")
in_len = int(in_out_len[0])
out_len = int(in_out_len[1])
input_str = get_continuation_input_str(in_len, tokenizer)
# As different tokenizer has different encodings,
# slice the input_ids to ensure the prompt length is required length.
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_list = [true_str] * batch_size
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
if repo_id not in DUMMY_IDS:
input_str = get_continuation_input_str(in_len, tokenizer)
# As different tokenizer has different encodings,
# slice the input_ids to ensure the prompt length is required length.
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_list = [true_str] * batch_size
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
else:
input_ids = torch.randint(1000, 2000, [batch_size, in_len], dtype=torch.int64).to('xpu')
actual_in_len = input_ids.shape[1]
result[in_out] = []
for i in range(num_trials + warm_up):
Expand All @@ -1413,9 +1437,10 @@ def run_transformer_int4_fp16_gpu_win(repo_id,
end = time.perf_counter()
output_ids = output_ids.cpu()
print("model generate cost: " + str(end - st))
output = tokenizer.batch_decode(output_ids)
if not streaming:
print(output[0])
if repo_id not in DUMMY_IDS:
output = tokenizer.batch_decode(output_ids)
if not streaming:
print(output[0])
actual_out_len = output_ids.shape[1] - actual_in_len
if i >= warm_up:
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
Expand Down Expand Up @@ -1590,6 +1615,10 @@ def run_transformer_int4_fp16_loadlowbit_gpu_win(repo_id,
use_cache=True, cpu_embedding=cpu_embedding).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path+'-'+low_bit, trust_remote_code=True)
model = model.half().to('xpu')
elif repo_id in DUMMY_IDS:
model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
use_cache=True, cpu_embedding=cpu_embedding).eval()
model = model.to('xpu')
else:
model = AutoModelForCausalLM.load_low_bit(model_path+'-'+low_bit, optimize_model=True, trust_remote_code=True,
use_cache=True, cpu_embedding=cpu_embedding).eval()
Expand All @@ -1600,7 +1629,10 @@ def run_transformer_int4_fp16_loadlowbit_gpu_win(repo_id,
print(">> loading of model costs {}s and {}GB".format(load_time, torch.xpu.memory.memory_reserved()/(1024**3)))

model = BenchmarkWrapper(model)
streamer = TextStreamer(tokenizer, skip_prompt=True)
if repo_id not in DUMMY_IDS:
streamer = TextStreamer(tokenizer, skip_prompt=True)
else:
streaming = False

result = {}
with torch.inference_mode():
Expand All @@ -1609,14 +1641,17 @@ def run_transformer_int4_fp16_loadlowbit_gpu_win(repo_id,
in_out_len = in_out.split("-")
in_len = int(in_out_len[0])
out_len = int(in_out_len[1])
input_str = get_continuation_input_str(in_len, tokenizer)
# As different tokenizer has different encodings,
# slice the input_ids to ensure the prompt length is required length.
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_list = [true_str] * batch_size
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
if repo_id not in DUMMY_IDS:
input_str = get_continuation_input_str(in_len, tokenizer)
# As different tokenizer has different encodings,
# slice the input_ids to ensure the prompt length is required length.
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_list = [true_str] * batch_size
input_ids = tokenizer(input_list, return_tensors="pt").input_ids.to('xpu')
else:
input_ids = torch.randint(1000, 2000, [batch_size, in_len], dtype=torch.int64).to('xpu')
actual_in_len = input_ids.shape[1]
result[in_out] = []
for i in range(num_trials + warm_up):
Expand All @@ -1633,9 +1668,10 @@ def run_transformer_int4_fp16_loadlowbit_gpu_win(repo_id,
end = time.perf_counter()
output_ids = output_ids.cpu()
print("model generate cost: " + str(end - st))
output = tokenizer.batch_decode(output_ids)
if not streaming:
print(output[0])
if repo_id not in DUMMY_IDS:
output = tokenizer.batch_decode(output_ids)
if not streaming:
print(output[0])
actual_out_len = output_ids.shape[1] - actual_in_len
if i >= warm_up:
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
Expand Down
2 changes: 2 additions & 0 deletions python/llm/test/benchmark/igpu-perf/1024-128.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,8 @@ repo_id:
- 'microsoft/Phi-3-mini-128k-instruct'
- 'microsoft/phi-3-vision-128k-instruct'
- 'openbmb/MiniCPM-V-2_6'
- 'dummy/dummy-1.5B'
- 'dummy/dummy-4B'
local_model_hub: 'path to your local model hub'
warm_up: 1
num_trials: 3
Expand Down
2 changes: 2 additions & 0 deletions python/llm/test/benchmark/igpu-perf/1024-128_int4_fp16.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,8 @@ repo_id:
- 'microsoft/Phi-3-mini-128k-instruct'
- 'microsoft/phi-3-vision-128k-instruct'
- 'openbmb/MiniCPM-V-2_6'
- 'dummy/dummy-1.5B'
- 'dummy/dummy-4B'
local_model_hub: 'path to your local model hub'
warm_up: 1
num_trials: 3
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,8 @@ repo_id:
- 'microsoft/Phi-3-mini-4k-instruct'
- 'microsoft/Phi-3-mini-128k-instruct'
- 'microsoft/phi-3-vision-128k-instruct'
- 'dummy/dummy-1.5B'
- 'dummy/dummy-4B'
local_model_hub: 'path to your local model hub'
warm_up: 1
num_trials: 3
Expand Down
2 changes: 2 additions & 0 deletions python/llm/test/benchmark/igpu-perf/2048-256_int4_fp16.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,8 @@ repo_id:
- 'microsoft/Phi-3-mini-128k-instruct'
- 'microsoft/phi-3-vision-128k-instruct'
- 'openbmb/MiniCPM-V-2_6'
- 'dummy/dummy-1.5B'
- 'dummy/dummy-4B'
local_model_hub: 'path to your local model hub'
warm_up: 1
num_trials: 3
Expand Down
2 changes: 2 additions & 0 deletions python/llm/test/benchmark/igpu-perf/3072-384_int4_fp16.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,8 @@ repo_id:
- 'microsoft/Phi-3-mini-128k-instruct'
- 'microsoft/phi-3-vision-128k-instruct'
- 'openbmb/MiniCPM-V-2_6'
- 'dummy/dummy-1.5B'
- 'dummy/dummy-4B'
local_model_hub: 'path to your local model hub'
warm_up: 1
num_trials: 3
Expand Down
2 changes: 2 additions & 0 deletions python/llm/test/benchmark/igpu-perf/32-32_int4_fp16.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,8 @@ repo_id:
- 'microsoft/Phi-3-mini-128k-instruct'
- 'microsoft/phi-3-vision-128k-instruct'
- 'openbmb/MiniCPM-V-2_6'
- 'dummy/dummy-1.5B'
- 'dummy/dummy-4B'
local_model_hub: 'path to your local model hub'
warm_up: 3
num_trials: 5
Expand Down
2 changes: 2 additions & 0 deletions python/llm/test/benchmark/igpu-perf/4096-512_int4_fp16.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,8 @@ repo_id:
- 'microsoft/Phi-3-mini-128k-instruct'
- 'microsoft/phi-3-vision-128k-instruct'
- 'openbmb/MiniCPM-V-2_6'
- 'dummy/dummy-1.5B'
- 'dummy/dummy-4B'
local_model_hub: 'path to your local model hub'
warm_up: 1
num_trials: 3
Expand Down
Loading