Skip to content

Releases: intel/ai-reference-models

Model Zoo for Intel® Architecture v2.7.0

14 Apr 15:35
Compare
Choose a tag to compare

Supported Frameworks

  • TensorFlow v2.8.0
  • PyTorch v1.11.0 and IPEX v1.11.0

New models

  • N/A

New features

Bug fixes:

Supported Configurations

Intel Model Zoo 2.7.0 is validated on the following environment:

  • Ubuntu 20.04 LTS
  • Python 3.8, 3.9
  • Docker Server v19+
  • Docker Client v18+

Model Zoo for Intel® Architecture v2.6.1

31 Jan 18:43
Compare
Choose a tag to compare

Features and bug fixes

Supported Configurations

Intel Model Zoo 2.6.1 is validated on the following environment:

  • Ubuntu 20.04 LTS
  • Python 3.8, 3.9
  • Docker Server v19+
  • Docker Client v18+

Model Zoo for Intel® Architecture v2.6.0

17 Dec 23:00
Compare
Choose a tag to compare

TensorFlow Framework

  • Support for TensorFlow v2.7.0

New TensorFlow models

  • N/A

Other features and bug fixes for TensorFlow models

  • Updates to only use docker --privileged when required and check --cpuset
    • Except for BERT Large and Wide and Deep models
  • Updated the ImageNet download link
  • Fix platform_util.py for systems with only one socket or subset of cores within a socket
  • Replace USE_DAAL4PY_SKLEARN env var with patch_sklearn
  • Add error handling for when a frozen graph isn't passed for BERT large FP32 inference*

PyTorch Framework

  • Support for PyTorch v1.10.0 and IPEX v1.10.0

New PyTorch models

  • GoogLeNet Inference(FP32, BFloat16**)
  • Inception v3 Inference(FP32, BFloat16**)
  • MNASNet 0.5 Inference(FP32, BFloat16**)
  • MNASNet 1.0 Inference(FP32, BFloat16**)
  • ResNet 50 Inference(Int8)
  • ResNet 50 Training(FP32, BFloat16**)
  • ResNet 101 Inference(FP32, BFloat16**)
  • ResNet 152 Inference(FP32, BFloat16**)
  • ResNext 32x4d Inference(FP32, BFloat16**)
  • ResNext 32x16d Inference(FP32, Int8, BFloat16**)
  • VGG-11 Inference(FP32, BFloat16**)
  • VGG-11 with batch normalization Inference(FP32, BFloat16**)
  • Wide ResNet-50-2 Inference(FP32, BFloat16**)
  • Wide ResNet-101-2 Inference(FP32, BFloat16**)
  • BERT base Inference(FP32, BFloat16**)
  • BERT large Inference(FP32, Int8, BFloat16**)
  • BERT large Training(FP32, BFloat16**)
  • DistilBERT base Inference(FP32, BFloat16**)
  • RNN-T Inference(FP32, BFloat16**)
  • RNN-T Training(FP32, BFloat16**)
  • RoBERTa base Inference(FP32, BFloat16**)
  • Faster R-CNN ResNet50 FPN Inference(FP32
  • Mask R-CNN Inference(FP32, BFloat16**)
  • Mask R-CNN Training(FP32, BFloat16**)
  • Mask R-CNN ResNet50 FPN Inference(FP32)
  • RetinaNet ResNet-50 FPN Inference(FP32)
  • SSD-ResNet34 Inference(FP32, Int8, BFloat16**)
  • SSD-ResNet34 Training(FP32, BFloat16**)
  • DLRM Inference(FP32, Int8, BFloat16**)
  • DLRM Training(FP32)

Other features and bug fixes for PyTorch models

  • DLRM and ResNet 50 documentation updates

Supported Configurations

Intel Model Zoo 2.6.0 is validated on the following environment:

  • Ubuntu 20.04 LTS
  • Python 3.8, 3.9
  • Docker Server v19+
  • Docker Client v18+

Intel Model Zoo v2.5.0

21 Oct 18:33
Compare
Choose a tag to compare

New Functionality

New Models

  • ML-Perf Transformer-LT Training (FP32 and BFloat16)
  • ML-Perf Transformer-LT Inference (FP32, BFloat16 and INT8)
  • ML-Perf 3D-Unet Inference (FP32, BFloat16 and INT8)
  • DIEN Training (FP32)
  • DIEN Inference (FP32 and BFloat16)

Other features and bug fixes

  • Added IPython Notebook with BERT classifier fine tuning using IMDb
  • Documentation for creating an LPOT Container with Intel® Optimizations for TensorFlow
  • Advanced documentation for wide deep large ds fp32 training
  • Increase Unit testing coverage

DL Frameworks (TensorFlow)

  • Support for TensorFlow v2.6.0 and TensorFlow Serving v2.6.0

DL Frameworks (PyTorch)

  • Support for PyTorch v1.9.0 and IPEX v1.9.0

Supported Configurations

Intel Model Zoo 2.5.0 is validated on the following environment:

  • Ubuntu 20.04 LTS
  • Python 3.8
  • Docker Server v19+
  • Docker Client v18+

v2.4.0

26 Jul 23:00
Compare
Choose a tag to compare

New Functionality

DL Frameworks (TensorFlow)

  • Support for TensorFlow v2.5.0 and TensorFlow Serving v2.5.1

Supported Configurations

Intel Model Zoo 2.4 is validated on the following environment:

  • Ubuntu 20.04 LTS
  • Python 3.8
  • Docker Server v19+
  • Docker Client v18+

v2.3.0

17 Feb 04:17
Compare
Choose a tag to compare

New Functionality

Two new TF workload containers and model packages that are available on the Intel® oneContainer Portal:

  • 3D U-Net FP32 Inference
  • SSD ResNet34 BFloat16 Training

One new PyTorch workload containers and model packages that are available on the Intel® oneContainer Portal:

  • DLRM BFloat16 Training

DL Frameworks (TensorFlow)

TensorFlow models in the 2.3 release are validated on the following TensorFlow versions:

  • Intel Optimizations for TensorFlow v2.4.0 or v1.15.2 (select models)
  • Intel Optimizations for TensorFlow serving v2.3

DL Frameworks (PyTorch)

PyTorch models in the 2.3 release are validated on the following PyTorch version:

  • PyTorch v1.5.0-rc3

Supported Configurations

Intel Model Zoo 2.3 is validated on the following environment:

  • Ubuntu 20.04 LTS
  • Python 3.6
  • Docker Server v19+
  • Docker Client v18+

Intel Model Zoo 2.2.0 release

13 Dec 00:11
Compare
Choose a tag to compare

New Functionality

Ten new TF workload containers and model packages that are available on the Intel® oneContainer Portal:

  • InceptionV4 FP32 Inference
  • InceptionV4 Int8 Inference
  • ResNet101 FP32 Inference
  • ResNet101 Int8 Inference
  • Transformer-LT MLPerf BFloat16 Training
  • GNMT MLPerf FP32 Inference
  • DenseNet169 FP32 Inference
  • ResNet50v1.5 BFloat16 Training
  • Wide & Deep Large Dataset FP32 Inference
  • Wide & Deep Large Dataset Int8 Inference

Two new PyTorch workload containers and model packages that are available on the Intel® oneContainer Portal:

  • ResNet50 FP32 Inference
  • ResNet50 BFloat16 Inference

Three new TF Kubernetes packages that are available on the Intel® oneContainer Portal:

  • BERT Large FP32 Training
  • Wide & Deep Large Dataset FP32 Training
  • RFCN FP32 Inference

A new Helm chart to deploy TensorFlow Serving on a K8s cluster

DL Frameworks (TensorFlow)

TensorFlow models in the 2.2 release are validated on the following TensorFlow versions:

  • Intel Optimizations for TensorFlow v2.3.0 or v1.15.2 (select models)
  • Intel Optimizations for TensorFlow serving v2.3

DL Frameworks (PyTorch)

PyTorch models in the 2.2 release are validated on the following PyTorch version:

  • PyTorch v1.5.0-rc3

Supported Configurations

Intel Model Zoo 2.2 is validated on the following environment:

  • Ubuntu 18.04 LTS
  • Python 3.6
  • Docker Server v19+
  • Docker Client v18+

Intel Model Zoo v2.1.1

20 Nov 23:12
Compare
Choose a tag to compare

New Functionality

One new TensorFlow workload containers that are available on the Intel® oneContainer Portal:

  • COCO Validation Dataset Preprocessing

6 new TensorFlow workload containers that are available on the Intel® oneContainer Portal:

  • TensorFlow Performance Comparison Jupyter Notebook

  • Intel PyTorch Extension

  • Intel Optimizations for TensorFlow with Scikit-learn and oneDAL

  • Scikit-learn with oneDAL

  • XGBoost with oneDAL

  • Intel Optimized Analytics Package(OAP) for Spark Platform

One new TensorFlow K8s workflow package that are available on the Intel® oneContainer Portal:

  • ResNet50 v1.5 FP32 Training

DL Frameworks (TensorFlow)

TensorFlow models in this release are validated on the following TensorFlow versions:

  • Intel Optimizations for TensorFlow v2.3.0 or v1.15.2 (select models)

  • Intel Optimizations for TensorFlow Serving v2.3.0

DL Frameworks (PyTorch)

  • PyTorch models in this release are validated on the following PyTorch version:

  • PyTorch v1.5.0-rc3

Supported Configurations

  • Intel Model Zoo 2.0 is validated on the following environment:

  • Ubuntu 18.04 LTS

  • Python 3.6

  • Docker Server v19+

  • Docker Client v18+