Skip to content
This repository has been archived by the owner on Aug 5, 2022. It is now read-only.

Commit

Permalink
IntelCaffe release_1.1.4
Browse files Browse the repository at this point in the history
  • Loading branch information
daisyden committed Feb 2, 2019
2 parents 7010334 + 7f06baf commit abb553c
Show file tree
Hide file tree
Showing 47 changed files with 236,309 additions and 136 deletions.
23 changes: 2 additions & 21 deletions docker/standalone/cpu-centos/Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,6 @@ RUN rpm -iUvh https://dl.fedoraproject.org/pub/epel/7/x86_64/Packages/e/epel-rel
redhat-rpm-config \
tar \
findutils \
make \
gcc-c++ \
cmake \
git \
Expand All @@ -26,30 +25,12 @@ RUN rpm -iUvh https://dl.fedoraproject.org/pub/epel/7/x86_64/Packages/e/epel-rel
net-tools \
ufw \
iptables \
atlas-devel \
boost-devel \
gflags-devel \
glog-devel \
hdf5-devel \
leveldb-devel \
lmdb-devel \
opencv-devel \
protobuf-devel \
snappy-devel \
protobuf-compiler \
freetype-devel \
libpng-devel \
python-devel \
python-numpy \
python-pip \
python-scipy \
gcc-gfortran \
libjpeg-turbo-devel && \
gcc-gfortran && \
yum clean all

# Install conda and Intel Caffe conda package
WORKDIR /root/
RUN wget -c https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh && \
RUN wget --no-check-certificate -c https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh && \
bash Miniconda2-latest-Linux-x86_64.sh -b && \
./miniconda2/bin/conda config --add channels intel && \
./miniconda2/bin/conda install -c intel caffe && \
Expand Down
24 changes: 3 additions & 21 deletions docker/standalone/cpu-ubuntu/Dockerfile
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ MAINTAINER caffe-maint@googlegroups.com

RUN apt-get update && \
apt-get install -y --no-install-recommends \
cpio \
bzip2 \
build-essential \
cmake \
git \
Expand All @@ -17,31 +17,13 @@ RUN apt-get update && \
vim \
net-tools \
iputils-ping \
screen \
libmlx4-1 libmlx5-1 ibutils rdmacm-utils libibverbs1 ibverbs-utils perftest infiniband-diags \
openmpi-bin libopenmpi-dev \
ufw \
iptables \
libboost-all-dev \
libgflags-dev \
libgoogle-glog-dev \
libhdf5-serial-dev \
libleveldb-dev \
liblmdb-dev \
libopencv-dev \
libprotobuf-dev \
libsnappy-dev \
protobuf-compiler \
python-dev \
python-numpy \
python-pip \
python-setuptools \
python-scipy && \
iptables && \
rm -rf /var/lib/apt/lists/*

# Install conda and Intel Caffe conda package
WORKDIR /root/
RUN wget -c https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh && \
RUN wget --no-check-certificate -c https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh && \
bash Miniconda2-latest-Linux-x86_64.sh -b && \
./miniconda2/bin/conda config --add channels intel && \
./miniconda2/bin/conda install -c intel caffe && \
Expand Down
208 changes: 208 additions & 0 deletions examples/VNet/DataManager.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,208 @@
import numpy as np
import SimpleITK as sitk
from os import listdir
from os.path import isfile, join, splitext

class DataManager(object):
params=None
srcFolder=None
resultsDir=None

fileList=None
gtList=None

sitkImages=None
sitkGT=None
meanIntensityTrain = None

def __init__(self,srcFolder,resultsDir,parameters):
self.params=parameters
self.srcFolder=srcFolder
self.resultsDir=resultsDir

def createImageFileList(self):
self.fileList = [f for f in listdir(self.srcFolder) if isfile(join(self.srcFolder, f)) and 'segmentation' not in f and 'raw' not in f]
print 'FILE LIST: ' + str(self.fileList)


def createGTFileList(self):
self.gtList=list()
for f in self.fileList:
filename, ext = splitext(f)
self.gtList.append(join(filename + '_segmentation' + ext))


def loadImages(self):
self.sitkImages=dict()
rescalFilt=sitk.RescaleIntensityImageFilter()
rescalFilt.SetOutputMaximum(1)
rescalFilt.SetOutputMinimum(0)

stats = sitk.StatisticsImageFilter()
m = 0.
for f in self.fileList:
self.sitkImages[f]=rescalFilt.Execute(sitk.Cast(sitk.ReadImage(join(self.srcFolder, f)),sitk.sitkFloat32))
stats.Execute(self.sitkImages[f])
m += stats.GetMean()

self.meanIntensityTrain=m/len(self.sitkImages)


def loadGT(self):
self.sitkGT=dict()

for f in self.gtList:
self.sitkGT[f]=sitk.Cast(sitk.ReadImage(join(self.srcFolder, f))>0.5,sitk.sitkFloat32)



def loadTrainingData(self):
self.createImageFileList()
self.createGTFileList()
self.loadImages()
self.loadGT()


def loadTestData(self):
self.createImageFileList()
self.loadImages()

def getNumpyImages(self):
dat = self.getNumpyData(self.sitkImages,sitk.sitkLinear)
return dat


def getNumpyGT(self):
dat = self.getNumpyData(self.sitkGT,sitk.sitkLinear)

for key in dat:
dat[key] = (dat[key]>0.5).astype(dtype=np.float32)

return dat


def getNumpyData(self,dat,method):
ret=dict()
for key in dat:
ret[key] = np.zeros([self.params['VolSize'][0], self.params['VolSize'][1], self.params['VolSize'][2]], dtype=np.float32)

img=dat[key]

#we rotate the image according to its transformation using the direction and according to the final spacing we want
factor = np.asarray(img.GetSpacing()) / [self.params['dstRes'][0], self.params['dstRes'][1],
self.params['dstRes'][2]]

factorSize = np.asarray(img.GetSize() * factor, dtype=float)

newSize = np.max([factorSize, self.params['VolSize']], axis=0)

newSize = newSize.astype(dtype=int)

T=sitk.AffineTransform(3)
T.SetMatrix(img.GetDirection())

resampler = sitk.ResampleImageFilter()
resampler.SetReferenceImage(img)
resampler.SetOutputSpacing([self.params['dstRes'][0], self.params['dstRes'][1], self.params['dstRes'][2]])
resampler.SetSize(newSize)
resampler.SetInterpolator(method)
if self.params['normDir']:
resampler.SetTransform(T.GetInverse())

imgResampled = resampler.Execute(img)


imgCentroid = np.asarray(newSize, dtype=float) / 2.0

imgStartPx = (imgCentroid - self.params['VolSize'] / 2.0).astype(dtype=int)

regionExtractor = sitk.RegionOfInterestImageFilter()
regionExtractor.SetSize(list(self.params['VolSize'].astype(dtype=int)))
regionExtractor.SetIndex(list(imgStartPx))

imgResampledCropped = regionExtractor.Execute(imgResampled)

ret[key] = np.transpose(sitk.GetArrayFromImage(imgResampledCropped).astype(dtype=float), [2, 1, 0])

return ret


def writeResultsFromNumpyLabel(self,result,key):
img = self.sitkImages[key]

toWrite=sitk.Image(img.GetSize()[0],img.GetSize()[1],img.GetSize()[2],sitk.sitkFloat32)

factor = np.asarray(img.GetSpacing()) / [self.params['dstRes'][0], self.params['dstRes'][1],
self.params['dstRes'][2]]

factorSize = np.asarray(img.GetSize() * factor, dtype=float)

newSize = np.max([factorSize, self.params['VolSize']], axis=0)

newSize = newSize.astype(dtype=int)

T = sitk.AffineTransform(3)
T.SetMatrix(img.GetDirection())

resampler = sitk.ResampleImageFilter()
resampler.SetReferenceImage(img)
resampler.SetOutputSpacing([self.params['dstRes'][0], self.params['dstRes'][1], self.params['dstRes'][2]])
resampler.SetSize(newSize)
resampler.SetInterpolator(sitk.sitkNearestNeighbor)

if self.params['normDir']:
resampler.SetTransform(T.GetInverse())

toWrite = resampler.Execute(toWrite)

imgCentroid = np.asarray(newSize, dtype=float) / 2.0

imgStartPx = (imgCentroid - self.params['VolSize'] / 2.0).astype(dtype=int)

for dstX, srcX in zip(range(0, result.shape[0]), range(imgStartPx[0],int(imgStartPx[0]+self.params['VolSize'][0]))):
for dstY, srcY in zip(range(0, result.shape[1]), range(imgStartPx[1], int(imgStartPx[1]+self.params['VolSize'][1]))):
for dstZ, srcZ in zip(range(0, result.shape[2]), range(imgStartPx[2], int(imgStartPx[2]+self.params['VolSize'][2]))):
try:
toWrite.SetPixel(int(srcX),int(srcY),int(srcZ),float(result[dstX,dstY,dstZ]))
except:
pass


resampler.SetOutputSpacing([img.GetSpacing()[0], img.GetSpacing()[1], img.GetSpacing()[2]])
resampler.SetSize(img.GetSize())

if self.params['normDir']:
resampler.SetTransform(T)

toWrite = resampler.Execute(toWrite)

thfilter=sitk.BinaryThresholdImageFilter()
thfilter.SetInsideValue(1)
thfilter.SetOutsideValue(0)
thfilter.SetLowerThreshold(0.5)
toWrite = thfilter.Execute(toWrite)

#connected component analysis (better safe than sorry)

cc = sitk.ConnectedComponentImageFilter()
toWritecc = cc.Execute(sitk.Cast(toWrite,sitk.sitkUInt8))

arrCC=np.transpose(sitk.GetArrayFromImage(toWritecc).astype(dtype=float), [2, 1, 0])

lab=np.zeros(int(np.max(arrCC)+1),dtype=float)

for i in range(1,int(np.max(arrCC)+1)):
lab[i]=np.sum(arrCC==i)

activeLab=np.argmax(lab)

toWrite = (toWritecc==activeLab)

toWrite = sitk.Cast(toWrite,sitk.sitkUInt8)

writer = sitk.ImageFileWriter()
filename, ext = splitext(key)
#print join(self.resultsDir, filename + '_result' + ext)
writer.SetFileName(join(self.resultsDir, filename + '_result' + ext))
writer.Execute(toWrite)

Loading

0 comments on commit abb553c

Please sign in to comment.