Skip to content

Commit

Permalink
Update GEMM list of problem sizes (#1662)
Browse files Browse the repository at this point in the history
The new list includes all problem sizes we reported in presentations.

Signed-off-by: Whitney Tsang <whitney.tsang@intel.com>
  • Loading branch information
whitneywhtsang authored Jul 21, 2024
1 parent 648c752 commit 2d4f714
Showing 1 changed file with 23 additions and 6 deletions.
29 changes: 23 additions & 6 deletions benchmarks/xetla_benchmark/gemm_benchmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -324,18 +324,35 @@ def matmul(a, b):
@triton.testing.perf_report(
triton.testing.Benchmark(
# argument names to use as an x-axis for the plot
x_names=['B', 'M', 'N', 'K'],
x_names=['B', 'M', 'K', 'N'],
# different possible values for `x_name`
x_vals=[[1, 256 * i, 256 * i, 256 * i] for i in range(1, 17)] + #
[[4, 32768, 128, 4096], #
x_vals=[[1, 1024 * i, 1024 * i, 1024 * i] for i in [1, 2, 4, 8]] + #
[[1, 1, 5120, 13824], #
[1, 4, 4096, 12288], #
[1, 512, 8192, 8192], #
[1, 512, 8192, 32768], #
[1, 512, 32768, 8192], #
[1, 1024, 16384, 8192], #
[1, 1024, 28672, 8192], #
[1, 3072, 4096, 3072], #
[1, 4096, 16384, 8192], #
[1, 8192, 16384, 1024], #
[1, 8192, 16384, 4096], #
[1, 16384, 1024, 8192], #
[1, 16384, 4096, 8192], #
[1, 16384, 8192, 1024], #
[1, 16384, 8192, 4096], #
[4, 32768, 128, 4096], #
[4, 32768, 4096, 128], #
[32, 4096, 4096, 128]],
[32, 4096, 4096, 128], #
[4096, 8, 128, 16384], #
[4096, 8, 16384, 128]],
line_arg='provider',
# argument name whose value corresponds to a different line in the plot
# possible values for `line_arg``
line_vals=['onednn', 'triton', 'xetla'],
# label name for the lines
line_names=["oneDNN", "Triton", "Xetla"],
line_names=["oneDNN", "Triton", "XeTLA"],
# line styles
#styles=[('green', '-'), ('green', '--'), ('blue', '-'), ('blue', '--')],
ylabel="TFLOPS", # label name for the y-axis
Expand All @@ -351,7 +368,7 @@ def benchmark(B, M, N, K, provider):
a = torch.rand((B, M, K), device='xpu', dtype=torch.bfloat16)
b = torch.rand((B, K, N), device='xpu', dtype=torch.bfloat16)

quantiles = [0.5, 0.2, 0.8]
quantiles = [0.5, 0.0, 1.0]

# calculate tflops for oneDNN kernel
def calculate_tflops(ms):
Expand Down

0 comments on commit 2d4f714

Please sign in to comment.