forked from intel/intel-extension-for-transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_dlsa.py
342 lines (284 loc) · 11 KB
/
run_dlsa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# Copyright (C) 2022 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions
# and limitations under the License.
#
"""E2E DLSA fine-tuning and inference pipeline with ITREX"""
import os
from contextlib import contextmanager
from dataclasses import dataclass, field
from pathlib import Path
from time import perf_counter_ns
from typing import Optional
import numpy as np
import torch
from datasets import load_dataset
from neural_compressor.benchmark import fit
from neural_compressor.config import BenchmarkConfig
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import logging as hf_logging
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
HfArgumentParser,
TrainingArguments,
)
from intel_extension_for_transformers.transformers import (
OptimizedModel,
QuantizationConfig,
metrics,
objectives,
)
from intel_extension_for_transformers.transformers.trainer import NLPTrainer
hf_logging.set_verbosity_info()
@dataclass
class PredsLabels:
"""Class for the labels of the predictions"""
def __init__(self, preds, labels):
self.predictions = preds
self.label_ids = labels
@dataclass
class DlsaPipeline:
"""Class for the E2E DlsaPipeline"""
summary_msg: str = field(default_factory=str)
sec_to_ns_scale: int = 1000000000
@contextmanager
def track(self, step):
"""Function tracking the elapsed time for each phase in the Benchmark"""
start = perf_counter_ns()
yield
ns = perf_counter_ns() - start # pylint: disable=C0103
msg = f"\n{'*' * 70}\n'{step}' took {ns / self.sec_to_ns_scale:.3f}s ({ns:,}ns)\n{'*' * 70}\n"
# print(msg)
self.summary_msg += msg + "\n"
def summary(self):
"""Function printing the Benchmark Summary"""
print(f"\n{'#' * 30}\nBenchmark Summary:\n{'#' * 30}\n\n{self.summary_msg}")
@dataclass
class Arguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
default="distilbert-base-uncased",
metadata={
"help": "Path to pretrained model or model identifier from huggingface.co/models"
},
)
tokenizer_name: Optional[str] = field(
default="distilbert-base-uncased",
metadata={
"help": "Pretrained tokenizer name or path if not the same as model_name"
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, "
"truncate the number of training examples to this value if set."
},
)
max_test_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, "
"truncate the number of testing examples to this value if set."
},
)
dataset: Optional[str] = field(
default="sst2",
metadata={"help": "Select dataset ('imdb' / 'sst2'). Default is 'sst2'"},
)
max_seq_len: int = field(
default=512,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
do_quantize: bool = field(
default=False,
metadata={"help": "Whether or not to apply quantization."},
)
do_benchmark: bool = field(
default=False,
metadata={"help": "Whether or not to conduct inference benchmark."},
)
dtype_inf: Optional[str] = field(
default="fp32",
metadata={
"help": "Data type for inference pipeline. Support fp32 and int8 now"
},
)
num_of_instance: int = field(
default=2,
metadata={
"help": "The instance number for benchmark. By default 4 cores per instance."
},
)
def compute_metrics(p): # pylint: disable=C0103
"""Function calculating the total inference accuracy"""
preds = np.argmax(p.predictions, axis=1)
return {"acc": (preds == p.label_ids).mean()}
def save_train_metrics(train_result, trainer, max_train):
"""Function saving the fine-tuning results"""
# pytorch only
if train_result:
train_metrics = train_result.metrics
train_metrics["train_samples"] = max_train
trainer.save_metrics("train", train_metrics)
trainer.save_state()
def predict(model, trainer):
"""Prediction/evaluation loop"""
batch_size = trainer.args.per_device_eval_batch_size
all_outputs, all_labels = [], []
def prediction_step(batch, labels):
all_labels.extend(labels)
inputs = batch
output = model(**inputs)
all_outputs.append(output["logits"])
model.eval()
with torch.no_grad():
for batch in tqdm(
DataLoader(
trainer.eval_dataset,
batch_size=batch_size,
collate_fn=DataCollatorWithPadding(trainer.tokenizer),
)
):
prediction_step(batch=batch, labels=batch.pop("labels"))
acc = compute_metrics(
PredsLabels(preds=np.concatenate(all_outputs), labels=all_labels)
)
return acc["acc"]
def main():
"""Function running the E2E DLSA pipeline"""
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# args = HfArgumentParser(Arguments).parse_args_into_dataclasses()
# training_args = HfArgumentParser(TrainingArguments).parse_args_into_dataclasses()
parser = HfArgumentParser((Arguments, TrainingArguments))
args, training_args = parser.parse_args_into_dataclasses()
output_dir = Path(training_args.output_dir)
os.makedirs(output_dir, exist_ok=True)
dlsaPipeline = DlsaPipeline()
track = dlsaPipeline.track
# pylint: disable=E1101
max_train, max_test = args.max_train_samples, args.max_test_samples
################################# Load Data #################################
with track("Load Data"):
data = load_dataset(args.dataset)
train_all = data["train"]
test_split = "validation" if args.dataset == "sst2" else "test"
len_train = len(train_all)
train_data = (
train_all.select(range(len_train - max_train, len_train))
if max_train
else train_all
)
test_data = (
data[test_split].select(range(max_test)) if max_test else data[test_split]
)
text_column = [
c for c in test_data.column_names if not isinstance(test_data[c][0], int)
][0]
################################# Pre-process #################################
with track("Pre-process"):
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
)
max_seq_len = min(args.max_seq_len, tokenizer.model_max_length)
def preprocess(examples):
return tokenizer(
examples[text_column],
padding="max_length",
truncation=True,
max_length=max_seq_len,
)
kwargs = {
"function": preprocess,
"batched": True,
"remove_columns": [text_column]
+ (["idx"] if args.dataset == "sst2" else []),
}
train_data = train_data.map(**kwargs)
test_data = test_data.map(**kwargs)
################################# Load Model #################################
with track("Load Model"):
model = AutoModelForSequenceClassification.from_pretrained(
args.model_name_or_path # pylint: disable=E1101
)
trainer = NLPTrainer(
model=model, # the instantiated HF model to be trained
args=training_args, # training arguments, defined above
train_dataset=train_data, # training dataset
eval_dataset=test_data,
compute_metrics=compute_metrics, # evaluation metrics
tokenizer=tokenizer,
)
eval_dataloader = trainer.get_eval_dataloader(
# using part of the test dataset for evaluation
eval_dataset=(test_data.select(range(872))).remove_columns(
column_names="label"
)
)
################################ Fine-Tune #################################
if training_args.do_train:
with track("Fine-Tune"):
train_result = trainer.train()
trainer.save_model()
save_train_metrics(train_result, trainer, len(train_data))
################################ Quantize #################################
if args.do_quantize:
with track("Quantize"):
metric = metrics.Metric(name="eval_acc", is_relative=True, criterion=0.01)
q_config = QuantizationConfig(
framework="pytorch_ipex",
approach="PostTrainingStatic",
max_trials=200, # set the Max tune times
metrics=[metric],
objectives=[objectives.performance],
)
def eval_func(model):
return predict(model, trainer)
model = trainer.quantize(
quant_config=q_config,
calib_dataloader=eval_dataloader,
eval_func=eval_func,
)
############################## Inference #################################
if training_args.do_predict:
with track("Inference with Default FP32 Model"):
inf_metrics = predict(trainer.model, trainer)
print(f"\n*********** TEST_METRICS ***********\nAccuracy: {inf_metrics}\n")
with track("Inference with ITREX Quantized INT8 Model"):
inf_metrics = predict(model, trainer)
print(f"\n*********** TEST_METRICS ***********\nAccuracy: {inf_metrics}\n")
dlsaPipeline.summary()
############################## Benchmark #################################
if args.do_benchmark:
if args.dtype_inf == "int8":
# Load the model obtained after Intel Neural Compressor (INC) quantization
model = OptimizedModel.from_pretrained(args.model_name_or_path)
trainer.model = model
conf = BenchmarkConfig(
warmup=10,
iteration=100,
cores_per_instance=4,
num_of_instance=args.num_of_instance,
backend="ipex",
)
fit(model=trainer.model, config=conf, b_dataloader=eval_dataloader)
if __name__ == "__main__":
main()