forked from harsha-simhadri/big-ann-benchmarks
-
Notifications
You must be signed in to change notification settings - Fork 3
149 lines (142 loc) · 4.32 KB
/
neurips23.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Contributed by @GuilhemN in https://github.com/erikbern/ann-benchmarks/pull/233
name: Billion-Scale ANN Benchmarks, NeurIPS 2023
on: [push, pull_request]
jobs:
build:
runs-on: ubuntu-latest
strategy:
matrix:
include:
- algorithm: faiss
dataset: random-filter-s
track: filter
- algorithm: wm_filter
dataset: random-filter-s
track: filter
- algorithm: dhq
dataset: random-filter-s
track: filter
- algorithm: hwtl_sdu_anns_filter
dataset: random-filter-s
track: filter
- algorithm: parlayivf
dataset: random-filter-s
track: filter
- algorithm: linscan
dataset: sparse-small
track: sparse
- algorithm: nle
dataset: sparse-small
track: sparse
- algorithm: diskann
dataset: random-xs
track: streaming
- algorithm: diskann
dataset: random-xs
track: ood
- algorithm: cufe
dataset: random-s
track: filter
- algorithm: cufe
dataset: sparse-small
track: sparse
- algorithm: vamana
dataset: random-xs
track: ood
- algorithm: cufe
dataset: random-xs
track: ood
- algorithm: fdufilterdiskann
dataset: random-filter-s
track: filter
- algorithm: faissplus
dataset: random-filter-s
track: filter
- algorithm: shnsw
dataset: sparse-small
track: sparse
- algorithm: sustech-ood
dataset: random-xs
track: ood
- algorithm: epsearch
dataset: random-xs
track: ood
- algorithm: mysteryann
dataset: random-xs
track: ood
- algorithm: hwtl_sdu_anns_stream
dataset: random-xs
track: streaming
- algorithm: cufe
dataset: random-xs
track: streaming
- algorithm: sustech-whu
dataset: sparse-small
track: sparse
- algorithm: pyanns
dataset: sparse-small
track: sparse
- algorithm: pyanns
dataset: random-filter-s
track: filter
- algorithm: mysteryann-dif
dataset: random-xs
track: ood
- algorithm: pyanns
dataset: random-xs
track: streaming
- algorithm: ngt
dataset: random-xs
track: ood
- algorithm: pyanns
dataset: random-xs
track: ood
- algorithm: puck
dataset: random-xs
track: streaming
- algorithm: puck
dataset: random-filter-s
track: filter
- algorithm: puck
dataset: random-xs
track: ood
- algorithm: pinecone
dataset: random-filter-s
track: filter
- algorithm: zilliz
dataset: random-xs
track: ood
- algorithm: zilliz
dataset: sparse-small
track: sparse
- algorithm: zilliz
dataset: random-filter-s
track: filter
fail-fast: false
steps:
- uses: actions/checkout@v2 # Pull the repository
- name: Set up Python 3.10
uses: actions/setup-python@v2
with:
python-version: '3.10'
- name: Install dependencies
run: |
pip install -r requirements_py3.10.txt
python install.py --neurips23track $TRACK --algorithm $ALGO
env:
ALGO: ${{ matrix.algorithm }}
TRACK: ${{ matrix.track }}
- name: Run the benchmark
run: |
python create_dataset.py --dataset $DATASET
python run.py --algorithm $ALGO --max-n-algorithms 2 --neurips23track $TRACK --dataset $DATASET --timeout 600
sudo chmod -R 777 results/
if [ $TRACK != streaming ]
then
python plot.py --dataset $DATASET --neurips23track $TRACK --output plot.png
fi
python data_export.py --output test.csv
env:
ALGO: ${{ matrix.algorithm}}
DATASET: ${{ matrix.dataset }}
TRACK: ${{ matrix.track}}