-
Notifications
You must be signed in to change notification settings - Fork 1
/
apply_dt.py
46 lines (37 loc) · 1.54 KB
/
apply_dt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
################################################################################
# Copyright 2023 INTRIG
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
#!/bin/bash
import pandas
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
############################
# Example to run this script
# e.g., python apply_dt.py
############################
df = pandas.read_csv("gen_train_dataset/OUTPUT_DATASET/train_dataset.csv")
features = ["UL_IPGw", "UL_PSw", "UL_Pkts_N", "DL_IPGw", "DL_PSw", "DL_Pkts_N"]
X = df[features]
y = df.CG
print ("Applying DT using given training set.....")
dtree = DecisionTreeClassifier(min_impurity_decrease=0.000, ccp_alpha=0.000)
dtree = dtree.fit(X, y)
print ("Done!")
print ("Generating DT Plot in pmng foramt....")
fig = plt.figure(figsize=(55,40))
_ = tree.plot_tree(dtree, feature_names=features, class_names=["0","1"], filled=True)
fig.savefig("decistion_tree.png")
print ("All done!")