Skip to content

Latest commit

 

History

History
141 lines (123 loc) · 5.54 KB

README.md

File metadata and controls

141 lines (123 loc) · 5.54 KB

CRUW devkit

Package cruw-devkit is a useful toolkit for the CRUW dataset including sensor configurations, sensor calibration parameters, the mapping between RF image coordinates (in pixel) and radar's bird's-eye view coordinates (in meters), metadata, visualization tools, etc. More components are still in the developing phase.

Please refer to our dataset website for more information about the CRUW Dataset.

This repository is maintained by Yizhou Wang. Free to raise issues and help improve this repository.

News

  • We are organizing the ROD2021 Challenge at ACM ICMR 2021. Welcome your participation!
  • The code of the RODNet paper (WACV 2021) is released. [Paper] [Code]

Acknowledgment for CRUW dataset

ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY

This research is mainly conducted by the Information Processing Lab (IPL) at the University of Washington. It was partially supported by CMMB Vision – UWECE Center on Satellite Multimedia and Connected Vehicles. We would also like to thank the colleagues and students in IPL for their help and assistance on the dataset collection, processing, and annotation works.

Installation

Create a new conda environment. Tested under Python 3.6, 3.7, 3.8.

conda create -n cruw-devkit python=3.*

Run setup tool for this devkit.

conda activate cruw-devkit
pip install -e .

Tutorials

The tutorials for the usages of cruw-devkit package are listed in the tutorial folder.

Annotation Format

ROD2021 Dataset

Each training sequence (40 training sequences in total) has an txt object annotation file. The annotation format for the training set (each line in the txt files):

  frame_id range(m) azimuth(rad) class_name
  ...

General CRUW Dataset

For each sequence, a json file is provided as annotations:

{
  "dataset": "CRUW",
  "date_collect": "2019_09_29",
  "seq_name": "2019_09_29_onrd000",
  "n_frames": 1694,
  "fps": 30,
  "sensors": "C2R2",                  // <str>: "C1R1", "C2R1", "C2R2"
  "view": "front",                    // <str>: "front", "right-side"
  "setup": "vehicle",                 // <str>: "cart", "vehicle"
  "metadata": [
    {  // metadata for each frame
      "frame_id": 0,
      "cam_0": {
        "folder_name": "images_0",
        "frame_name": "0000000000.jpg",
        "width": 1440,
        "height": 864,
        "n_objects": 5,
        "obj_info": {
          "anno_source": "human",     // <str>: "human", "mrcnn", etc.
          "categories": [],           // <str> [n_objects]: category names
          "bboxes": [],               // <int> [n_objects, 4]: xywh
          "scores": [],               // <float> [n_objects]: confidence scores [0, 1]
          "masks": [],                // <rle_code> [n_objects]: instance masks
          "visibilities": [],         // <float> [n_objects]: [0, 1]
          "truncations": [],          // <float> [n_objects]: [0, 1]
          "translations": []          // <float> [n_objects, 3]: xyz(m)
        }
      },
      "cam_1": {
        "folder_name": "images_1",
        "frame_name": "0000000000.jpg",
        "width": 1440,
        "height": 864,
        "n_objects": 5,
        "obj_info": {
          "anno_source": "human",     // <str>: "human", "mrcnn", etc.
          "categories": [],           // <str> [n_objects]: category names
          "bboxes": [],               // <int> [n_objects, 4]: xywh
          "scores": [],               // <float> [n_objects]: confidence scores [0, 1]
          "masks": [],                // <rle_code> [n_objects]: instance masks
          "visibilities": [],         // <float> [n_objects]: [0, 1]
          "truncations": [],          // <float> [n_objects]: [0, 1]
          "translations": []          // <float> [n_objects, 3]: xyz(m)
        }
      },
      "radar_h": {
        "folder_name": "radar_chirps_win_RISEP_h",
        "frame_name": "000000.npy",
        "range": 128,
        "azimuth": 128,
        "n_chirps": 255,
        "n_objects": 3,
        "obj_info": {
          "anno_source": "human",     // <str>: "human", "co", "crf", etc.
          "categories": [],           // <str> [n_objects]: category names
          "centers": [],              // <float> [n_objects, 2]: range(m), azimuth(rad)
          "center_ids": [],           // <int> [n_objects, 2]: range indices, azimuth indices
          "scores": []                // <float> [n_objects]: confidence scores [0, 1]
        }
      },
      "radar_v": {
        "folder_name": "radar_chirps_win_RISEP_v",
        "frame_name": "000000.npy",
        "range": 128,
        "azimuth": 128,
        "n_chirps": 255,
        "n_objects": 3,
        "obj_info": {
          "anno_source": "human",     // <str>: "human", "co", "crf", etc.
          "categories": [],           // <str> [n_objects]: category names
          "centers": [],              // <float> [n_objects, 2]: range(m), azimuth(rad)
          "center_ids": [],           // <int> [n_objects, 2]: range indices, azimuth indices
          "scores": []                // <float> [n_objects]: confidence scores [0, 1]
        }
      }
    },
    {...}
  ]
}