forked from drieslab/giotto_workshop_2024
-
Notifications
You must be signed in to change notification settings - Fork 0
/
01_session4.Rmd
644 lines (486 loc) · 18.7 KB
/
01_session4.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
# Creating a Giotto object
Jiaji George Chen
August 5th 2024
## Overview
The minimal amount of raw data needed to put together a fully functional `giotto` object are either of the following:
- spatial coordinates (centroids) and expression matrix information
- spatial feature information (points or image intensity values) and spatial annotations to aggregate that feature information with (polygons/mask).
You can either use the `create*` style functions introduced in the previous session and build up the object piecewise or you can use the `giotto` object constructor functions `createGiottoObject()` and `createGiottoObjectSubcellular()`
## GiottoData modular package
We can showcase the construction of objects by pulling some raw data from the *GiottoData* package. A dataset was loaded from here earlier in the previous section, but to formally introduce it, this package contains mini datasets and also download links to other publicly available datasets. It helps with prototyping and development and also making reproducible examples.
The mini examples from popular platform datasets can also help give an understanding of what their data is like and how *Giotto* represents them.
## From matrix + locations
For this, we will load some visium expression information and spatial locations.
```{r, eval=FALSE}
library(Giotto)
# function to get a filepath from GiottoData
mini_vis_raw <- function(x) {
system.file(
package = "GiottoData",
file.path("Mini_datasets", "Visium", "Raw", x)
)
}
mini_vis_expr <- mini_vis_raw("visium_DG_expr.txt.gz") |>
data.table::fread() |>
GiottoUtils::dt_to_matrix()
mini_vis_expr[seq(5), seq(5)]
```
```
5 x 5 sparse Matrix of class "dgCMatrix"
AAAGGGATGTAGCAAG-1 AAATGGCATGTCTTGT-1 AAATGGTCAATGTGCC-1 AAATTAACGGGTAGCT-1 AACAACTGGTAGTTGC-1
Gna12 1 2 1 1 9
Ccnd2 . 1 1 . .
Btbd17 . 1 1 1 .
Sox9 . . . . .
Sez6 . 1 4 3 .
```
```{r, eval=FALSE}
mini_vis_slocs <- mini_vis_raw("visium_DG_locs.txt") |>
data.table::fread()
head(mini_vis_slocs)
```
```
V1 V2
<int> <int>
1: 5477 -4125
2: 5959 -2808
3: 4720 -5202
4: 5202 -5322
5: 4101 -4604
6: 5821 -3047
```
With these two pieces of data, we can make a fully working `giotto` object. The spatial locations are missing cell_ID names, but they will be detected from the expression information.
```{r, eval=FALSE}
mini_vis <- createGiottoObject(
expression = mini_vis_expr,
spatial_locs = mini_vis_slocs
)
instructions(mini_vis, "return_plot") <- FALSE
# set return_plot = FALSE otherwise we will get duplicate outputs in code chunks
```
For a simple example plot:
```{r, eval=FALSE}
spatFeatPlot2D(mini_vis,
feats = c("Gna12", "Gfap"),
expression_values = "raw",
point_size = 2.5,
gradient_style = "sequential",
background_color = "black"
)
```
```{r, echo=FALSE, fig.cap="Example spatial feature plot to show functioning object"}
knitr::include_graphics("img/01_session4/example_featplot.png")
```
## From subcellular raw data (transcripts or images) + polygons
You can also make `giotto` objects starting from raw spatial feature information and annotations that give them spatial context.
```{r, eval=FALSE}
# function to get a filepath from GiottoData
mini_viz_raw <- function(x) {
system.file(
package = "GiottoData",
file.path("Mini_datasets", "Vizgen", "Raw", x)
)
}
mini_viz_dt <- mini_viz_raw(file.path("cell_boundaries", "z0_polygons.gz")) |>
data.table::fread()
mini_viz_poly <- createGiottoPolygon(mini_viz_dt)
force(mini_viz_poly)
```
```
An object of class giottoPolygon
spat_unit : "cell"
Spatial Information:
class : SpatVector
geometry : polygons
dimensions : 498, 1 (geometries, attributes)
extent : 6399.244, 6903.243, -5152.39, -4694.868 (xmin, xmax, ymin, ymax)
coord. ref. :
names : poly_ID
type : <chr>
values : 40951783403982682273285375368232495429
240649020551054330404932383065726870513
274176126496863898679934791272921588227
centroids : NULL
overlaps : NULL
```
```{r, eval=FALSE}
plot(mini_viz_poly)
```
```{r, echo=FALSE, out.width="60%", fig.cap="Example MERSCOPE polygons loaded form vertex info"}
knitr::include_graphics("img/01_session4/viz_gpoly.png")
```
```{r, eval=FALSE}
mini_viz_tx <- mini_viz_raw("vizgen_transcripts.gz") |>
data.table::fread()
mini_viz_tx[, global_y := -global_y] # flip values to match polys
viz_gpoints <- createGiottoPoints(mini_viz_tx)
force(viz_gpoints)
```
```
An object of class giottoPoints
feat_type : "rna"
Feature Information:
class : SpatVector
geometry : points
dimensions : 80343, 3 (geometries, attributes)
extent : 6400.037, 6900.032, 4699.979, 5149.983 (xmin, xmax, ymin, ymax)
coord. ref. :
names : feat_ID global_z feat_ID_uniq
type : <chr> <int> <int>
values : Mlc1 0 1
Gprc5b 0 2
Gfap 0 3
```
```{r, eval=FALSE}
plot(viz_gpoints)
```
```{r, echo=FALSE, out.width="60%", fig.cap="Example mini MERSCOPE transcripts data"}
knitr::include_graphics("img/01_session4/viz_gpoints.png")
```
```{r, eval=FALSE}
mini_viz <- createGiottoObjectSubcellular(
gpolygons = mini_viz_poly,
gpoints = viz_gpoints
)
instructions(mini_viz, "return_plot") <- FALSE
force(mini_viz)
```
```
An object of class giotto
>Active spat_unit: cell
>Active feat_type: rna
[SUBCELLULAR INFO]
polygons : cell
features : rna
[AGGREGATE INFO]
Use objHistory() to see steps and params used
```
```{r, eval=FALSE}
# calculate centroids
mini_viz <- addSpatialCentroidLocations(mini_viz)
# create aggregated information
mini_viz <- calculateOverlap(mini_viz)
mini_viz <- overlapToMatrix(mini_viz)
spatFeatPlot2D(
mini_viz,
feats = c("Grm4", "Gfap"),
expression_values = "raw",
point_size = 2.5,
gradient_style = "sequential",
background_color = "black"
)
```
```{r, echo=FALSE, fig.cap="Example mini MERSCOPE aggregated feature counts"}
knitr::include_graphics("img/01_session4/example_featplot_sub.png")
```
## From piece-wise
You can also piece-wise assemble an object independently of one of the 2 previously shown convenience functions.
```{r, eval=FALSE}
g <- giotto() # initialize empty gobject
g <- setGiotto(g, mini_viz_poly)
g <- setGiotto(g, viz_gpoints)
force(g)
```
```
An object of class giotto
>Active spat_unit: cell
>Active feat_type: rna
[SUBCELLULAR INFO]
polygons : cell
features : rna
[AGGREGATE INFO]
Use objHistory() to see steps and params used
```
This is essentially the same object as the one created through `createGiottoObjectSubcellular()` earlier.
## Using convenience functions for popular technologies (Vizgen, Xenium, CosMx, …)
There are also several convenience functions we provide for loading in data from popular platforms. These functions take care of reading the expected output folder structures, auto-detecting where needed data items are, formatting items for ingestion, then object creation. Many of these will be touched on later during other sessions.
```
createGiottoVisiumObject()
createGiottoVisiumHDObject()
createGiottoXeniumObject()
createGiottoCosMxObject()
createGiottoMerscopeObject()
```
## Plotting
### Subobject plotting
Giotto has several spatial plotting functions. At the lowest level, you directly call `plot()` on several subobjects in order to see what they look like, particularly the ones containing spatial info. Here we load several mini subobjects which are taken from the vizgen MERSCOPE mini dataset. To see which mini objects are available for independent loading with `GiottoData::loadSubObjectMini()`, you can run `GiottoData::listSubobjectMini()`
```{r, eval=FALSE}
gpoints <- GiottoData::loadSubObjectMini("giottoPoints")
plot(gpoints)
plot(gpoints, dens = TRUE, col = getColors("magma", 255))
plot(gpoints, raster = FALSE)
plot(gpoints, feats = c("Grm4", "Gfap"))
```
```{r, echo=FALSE, fig.cap="giottoPoints plots. Rasterized (top left), Rasterized and colored with 'magma' color scale by density (top right), Non-rasterized (bottom left), Plotting specifically 2 features (bottom right)"}
knitr::include_graphics("img/01_session4/gpoint_plots.png")
```
```{r, eval=FALSE}
gpoly <- GiottoData::loadSubObjectMini("giottoPolygon")
plot(gpoly)
plot(gpoly, type = "centroid")
plot(gpoly, max_poly = 10)
```
```{r, echo=FALSE, fig.cap="giottoPolygon plots. default (left), plotting centroids (middle), auto changing to centroids after there are more polygons to plot than max_poly param (right)"}
knitr::include_graphics("img/01_session4/gpoly_plots.png")
```
```{r, eval=FALSE}
spatlocs <- GiottoData::loadSubObjectMini("spatLocsObj")
plot(spatlocs)
```
```{r, echo=FALSE, out.width="60%", fig.cap="Plot of spatLocsObj"}
knitr::include_graphics("img/01_session4/sl_plot.png")
```
```{r, eval=FALSE}
spatnet <- GiottoData::loadSubObjectMini("spatialNetworkObj")
plot(spatnet)
```
```{r, echo=FALSE, out.width="60%", fig.cap="Plot of spatialNetworkObj"}
knitr::include_graphics("img/01_session4/spatnet_plot.png")
```
```{r, eval=FALSE}
pca <- GiottoData::loadSubObjectMini("dimObj")
plot(pca, dims = c(3,10))
```
```{r, echo=FALSE, out.width="60%", fig.cap="Plot of PCA dimObj showing the 3rd and 10th PCs"}
knitr::include_graphics("img/01_session4/dimobj_plot.png")
```
### Additive subobject plotting
These base plotting functions inherit from `terra::plot()`. They can be used additively with more than one object.
```{r, eval=FALSE}
gimg <- GiottoData::loadSubObjectMini("giottoLargeImage")
plot(gimg, col = getMonochromeColors("#5FAFFF"))
plot(gpoly, border = "maroon", lwd = 0.5, add = TRUE)
```
```{r, echo=FALSE, fig.cap="Plot image with monochrome color scaling with added polygon borders"}
knitr::include_graphics("img/01_session4/additive_baseplot.png")
```
### Giotto object plotting
*Giotto* also has several *ggplot2*-based plotting functions that work on the whole `giotto` object. Here we load the vizgen mini dataset from *GiottoData* which contains a lot of worked through data.
#### Giotto spatial plot functions
`spatPlot()` - standard centroid-based plotting geared towards metadata plotting
```{r, eval=FALSE}
g <- GiottoData::loadGiottoMini("vizgen")
activeSpatUnit(g) <- "aggregate" # set default spat_unit to the one with lots of results
force(g)
```
```
An object of class giotto
>Active spat_unit: aggregate
>Active feat_type: rna
[SUBCELLULAR INFO]
polygons : z0 z1 aggregate
features : rna
[AGGREGATE INFO]
expression -----------------------
[z0][rna] raw
[z1][rna] raw
[aggregate][rna] raw normalized scaled pearson
spatial locations ----------------
[z0] raw
[z1] raw
[aggregate] raw
spatial networks -----------------
[aggregate] Delaunay_network kNN_network
spatial enrichments --------------
[aggregate][rna] cluster_metagene
dim reduction --------------------
[aggregate][rna] pca umap tsne
nearest neighbor networks --------
[aggregate][rna] sNN.pca
attached images ------------------
images : 4 items...
Use objHistory() to see steps and params used
```
```{r, eval=FALSE}
spatPlot2D(g)
```
What metadata do we have in this mini object?
```{r, eval=FALSE}
pDataDT(g)
```
```
cell_ID nr_feats perc_feats total_expr leiden_clus
<char> <int> <num> <num> <num>
1: 240649020551054330404932383065726870513 5 1.483680 49.40986 2
2: 274176126496863898679934791272921588227 27 8.011869 191.50684 2
3: 323754550002953984063006506310071917306 23 6.824926 173.86955 4
4: 87260224659312905497866017323180367450 37 10.979228 246.04928 5
5: 17817477728742691260808256980746537959 18 5.341246 142.44520 4
---
458: 6380671372744430258754116433861320161 54 16.023739 339.24383 2
459: 75286702783716447443887872812098770697 45 13.353116 286.81011 1
460: 9677424102111816817518421117250891895 30 8.902077 211.71790 2
461: 17685062374745280598492217386845129350 5 1.483680 48.99550 2
462: 32422253415776258079819139802733069941 12 3.560831 102.52805 2
louvain_clus
<num>
1: 0
2: 3
3: 8
4: 6
5: 7
---
458: 0
459: 23
460: 3
461: 14
462: 0
```
We have some expression count statistics and clustering annotations already present in the object
```{r, eval=FALSE}
spatPlot2D(g,
cell_color = "leiden_clus")
spatPlot2D(g,
cell_color = "leiden_clus",
show_image = TRUE,
image_name = "dapi_z0")
spatPlot2D(g,
cell_color = "total_expr",
color_as_factor = FALSE,
gradient_style = "sequential")
spatPlot2D(g,
cell_color = "leiden_clus",
group_by = "leiden_clus")
```
```{r, echo=FALSE, fig.cap="Spatial plots"}
knitr::include_graphics("img/01_session4/spatplot.png")
```
`spatCellPlot()` - centroid-based plotting for spatial enrichment values
We have a `cluster_metagene` enrichment already made in the object that is a numerical measure of how much each of the cells map to the leiden clusters we have above
```{r, eval=FALSE}
spatCellPlot2D(g,
spat_enr_names = "cluster_metagene",
cell_annotation_values = as.character(1:5))
```
```{r, echo=FALSE, fig.cap="Spatial cell plot of cluster_metagene spatial enrichments"}
knitr::include_graphics("img/01_session4/spatcellplot.png")
```
```{r, eval=FALSE}
spatCellPlot2D(g,
spat_enr_names = "cluster_metagene",
cell_annotation_values = as.character(1:5),
cell_color_gradient = "magma",
background_color = "black")
```
```{r, echo=FALSE, fig.cap="Spatial cell plot of cluster_metagene spatial enrichments"}
knitr::include_graphics("img/01_session4/spatcellplot_magmajks.png")
```
`spatFeatPlot()` - centroid-based plotting for feature expression plotting
```{r, eval=FALSE}
spatFeatPlot2D(g,
feats = c("Flt4", "Mertk"),
point_size = 2,
expression_values = "scaled")
```
```{r, echo=FALSE, fig.cap="Spatial feature expression plot of normalized Flt4 (left) and Mertk expression (right)"}
knitr::include_graphics("img/01_session4/spatfeatplot.png")
```
`spatInSituPlotPoints()` - subcellular plotting with support for transcript points and polygons
```{r, eval=FALSE}
spatInSituPlotPoints(g,
feats = list(rna = c("Flt4", "Mertk", "Gfap")), # this should be a named list
point_size = 0.5,
polygon_fill = "total_expr",
polygon_fill_as_factor = FALSE,
polygon_fill_gradient_style = "sequential",
polygon_alpha = 0.5,
plot_last = "points",
show_image = TRUE
)
# without overlaps
spatInSituPlotPoints(g,
feats = list(rna = c("Flt4", "Mertk", "Gfap")), # this should be a named list
point_size = 0.5,
use_overlap = FALSE,
polygon_fill = "total_expr",
polygon_fill_as_factor = FALSE,
polygon_fill_gradient_style = "sequential",
polygon_alpha = 0.5,
plot_last = "points",
show_image = TRUE
)
```
```{r, echo=FALSE, fig.cap="Points and polygons subcellular plot with 3 transcript species plotted, polygons colored as number of detected transcripts, and dapi image plotted. Left is with only the points overlapped by polygons, right is with all points"}
knitr::include_graphics("img/01_session4/insituplots.png")
```
#### Giotto expression space plot functions
`dimPlot()` - dimension reduction plotting
Also has more specific functions for PCA `plotPCA()`, UMAP `plotUMAP()`, tSNE `plotTSNE()` results.
```{r, eval=FALSE}
dimPlot(g,
dim_reduction_name = "umap",
dim_reduction_to_use = "umap",
cell_color = "leiden_clus")
```
```{r, echo=FALSE, fig.cap="UMAP projection with leiden clustering colors"}
knitr::include_graphics("img/01_session4/dimplot.png")
```
#### Giotto common plotting args
- `gradient_style` - Should the gradient be of 'divergent' or 'sequential' styles?
- `color_as_factor` - Is annotation value a numerical or factor/categorical based item to plot.
- `cell_color_code` - What color mapping to provide
- `cell_color` - What column of information to use when plotting (metadata, expression, etc.)
- `point_shape` - Either 'border' or 'no_border' to draw on the points.
## Subsetting
### ID subsetting
Subset the `giotto` object for a random 300 cell IDs
```{r, eval=FALSE}
cx <- pDataDT(g)
nrow(cx)
```
```
[1] 462
```
```{r, eval=FALSE}
ex <- getExpression(g)
dim(ex)
```
```
[1] 337 462
```
```{r, eval=FALSE}
instructions(g, "cell_color_c_pal") <- "viridis"
instructions(g, "poly_color_c_pal") <- "viridis"
set.seed(1234)
gsubset <- subsetGiotto(g,
cell_ids = sample(spatIDs(g), 300))
```
```{r, eval=FALSE}
cx_sub <- pDataDT(gsubset)
nrow(cx_sub)
```
```
[1] 300
```
```{r, eval=FALSE}
spatPlot(g,
cell_color = "total_expr",
color_as_factor = FALSE,
background_color = "black")
spatPlot(gsubset,
cell_color = "total_expr",
color_as_factor = FALSE,
background_color = "black")
```
```{r, echo=FALSE, fig.cap="plot showing starting object (left) and subset object (right)"}
knitr::include_graphics("img/01_session4/subset_id.png")
```
### Coordinate-based subsetting
```{r, eval=FALSE}
gsubsetlocs <- subsetGiottoLocs(g,
x_min = 6500, x_max = 6700,
poly_info = "aggregate"
)
```
```{r, eval=FALSE}
spatPlot(gsubsetlocs,
cell_color = "total_expr",
color_as_factor = FALSE,
background_color = "black")
spatInSituPlotPoints(gsubsetlocs,
polygon_fill = "total_expr",
polygon_fill_as_factor = FALSE)
```
```{r, echo=FALSE, fig.cap="plot showing starting object (left) and subset object (right)"}
knitr::include_graphics("img/01_session4/subset_locs.png")
```