Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

torch.compile failed to legalize operation 'torch.aten.view' #27

Open
ziereis opened this issue Jun 10, 2024 · 0 comments
Open

torch.compile failed to legalize operation 'torch.aten.view' #27

ziereis opened this issue Jun 10, 2024 · 0 comments

Comments

@ziereis
Copy link

ziereis commented Jun 10, 2024

import math
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F

# -----------------------------------------------------------------------------

class CausalSelfAttention(nn.Module):

    def __init__(self, config):
        super().__init__()
        assert config.n_embd % config.n_head == 0
        # key, query, value projections for all heads, but in a batch
        self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
        # output projection
        self.c_proj = nn.Linear(config.n_embd, config.n_embd)
        # regularization
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        # not really a 'bias', more of a mask, but following the OpenAI/HF naming though
        self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
                                     .view(1, 1, config.block_size, config.block_size))

    def forward(self, x):
        B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        # nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
        # e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
        qkv = self.c_attn(x)
        q, k, v = qkv.split(self.n_embd, dim=2)
        k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
        # attention (materializes the large (T,T) matrix for all the queries and keys)
        att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
        att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
        att = F.softmax(att, dim=-1)
        y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
        y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
        # output projection
        y = self.c_proj(y)
        return y

class MLP(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.c_fc    = nn.Linear(config.n_embd, 4 * config.n_embd)
        self.gelu    = nn.GELU(approximate='tanh')
        self.c_proj  = nn.Linear(4 * config.n_embd, config.n_embd)

    def forward(self, x):
        x = self.c_fc(x)
        x = self.gelu(x)
        x = self.c_proj(x)
        return x

class Block(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.ln_1 = nn.LayerNorm(config.n_embd)
        self.attn = CausalSelfAttention(config)
        self.ln_2 = nn.LayerNorm(config.n_embd)
        self.mlp = MLP(config)

    def forward(self, x):
        x = x + self.attn(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x

@dataclass
class GPTConfig:
    block_size: int = 1024 # max sequence length
    vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
    n_layer: int = 12 # number of layers
    n_head: int = 12 # number of heads
    n_embd: int = 768 # embedding dimension

class GPT(nn.Module):

    def __init__(self, config):
        super().__init__()
        self.config = config

        self.transformer = nn.ModuleDict(dict(
            wte = nn.Embedding(config.vocab_size, config.n_embd),
            wpe = nn.Embedding(config.block_size, config.n_embd),
            h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
            ln_f = nn.LayerNorm(config.n_embd),
        ))
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

    def forward(self, idx):
        # idx is of shape (B, T)
        B, T = idx.size()
        assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
        # forward the token and posisition embeddings
        pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
        pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
        tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
        x = tok_emb + pos_emb
        # forward the blocks of the transformer
        for block in self.transformer.h:
            x = block(x)
        # forward the final layernorm and the classifier
        x = self.transformer.ln_f(x)
        logits = self.lm_head(x) # (B, T, vocab_size)
        return logits

    @classmethod
    def from_pretrained(cls, model_type):
        """Loads pretrained GPT-2 model weights from huggingface"""
        assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
        from transformers import GPT2LMHeadModel
        print("loading weights from pretrained gpt: %s" % model_type)

        # n_layer, n_head and n_embd are determined from model_type
        config_args = {
            'gpt2':         dict(n_layer=12, n_head=12, n_embd=768),  # 124M params
            'gpt2-medium':  dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
            'gpt2-large':   dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
            'gpt2-xl':      dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
        }[model_type]
        config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
        config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
        # create a from-scratch initialized minGPT model
        config = GPTConfig(**config_args)
        model = GPT(config)
        sd = model.state_dict()
        sd_keys = sd.keys()
        sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param

        # init a huggingface/transformers model
        model_hf = GPT2LMHeadModel.from_pretrained(model_type)
        sd_hf = model_hf.state_dict()

        # copy while ensuring all of the parameters are aligned and match in names and shapes
        sd_keys_hf = sd_hf.keys()
        sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
        sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
        transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
        # basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
        # this means that we have to transpose these weights when we import them
        assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
        for k in sd_keys_hf:
            if any(k.endswith(w) for w in transposed):
                # special treatment for the Conv1D weights we need to transpose
                assert sd_hf[k].shape[::-1] == sd[k].shape
                with torch.no_grad():
                    sd[k].copy_(sd_hf[k].t())
            else:
                # vanilla copy over the other parameters
                assert sd_hf[k].shape == sd[k].shape
                with torch.no_grad():
                    sd[k].copy_(sd_hf[k])

        return model

# -----------------------------------------------------------------------------
num_return_sequences = 5
max_length = 30

model = GPT.from_pretrained('gpt2')
model.eval()
# model.to('cuda')
print(torch._dynamo.list_backends())
model = torch.compile(model, backend="turbine_cpu")
# prefix tokens
import tiktoken
enc = tiktoken.get_encoding('gpt2')
tokens = enc.encode("Hello, I'm a language model,")
tokens = torch.tensor(tokens, dtype=torch.long) # (8,)
tokens = tokens.unsqueeze(0).repeat(num_return_sequences, 1) # (5, 8)
x = tokens
# x = tokens.to('cuda')

# generate! right now x is (B, T) where B = 5, T = 8
# set the seed to 42
torch.manual_seed(42)
torch.cuda.manual_seed(42)
while x.size(1) < max_length:
    # forward the model to get the logits
    with torch.no_grad():
        logits = model(x) # (B, T, vocab_size)
        # take the logits at the last position
        logits = logits[:, -1, :] # (B, vocab_size)
        # get the probabilities
        probs = F.softmax(logits, dim=-1)
        # do top-k sampling of 50 (huggingface pipeline default)
        # topk_probs here becomes (5, 50), topk_indices is (5, 50)
        topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)
        # select a token from the top-k probabilities
        # note: multinomial does not demand the input to sum to 1
        ix = torch.multinomial(topk_probs, 1) # (B, 1)
        # gather the corresponding indices
        xcol = torch.gather(topk_indices, -1, ix) # (B, 1)
        # append to the sequence
        x = torch.cat((x, xcol), dim=1)

# print the generated text
for i in range(num_return_sequences):
    tokens = x[i, :max_length].tolist()
    decoded = enc.decode(tokens)
    print(">", decoded)

running this code results in the following error:

out.txt

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant