-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdraft-irtf-nwcrg-network-coding-satellites-01.xml
618 lines (551 loc) · 40.7 KB
/
draft-irtf-nwcrg-network-coding-satellites-01.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
<?xml version="1.0" encoding="US-ASCII"?>
<!DOCTYPE rfc SYSTEM "rfc2629.dtd" [
<!ENTITY RFC2119 SYSTEM "http://xml.resource.org/public/rfc/bibxml/reference.RFC.2119.xml">
]>
<?xml-stylesheet type='text/xsl' href='rfc2629.xslt' ?>
<?rfc strict="yes" ?>
<?rfc toc="yes"?>
<?rfc tocdepth="4"?>
<?rfc symrefs="yes"?>
<?rfc sortrefs="yes" ?>
<?rfc compact="yes" ?>
<?rfc subcompact="no" ?>
<rfc
category="info"
docName="draft-irtf-nwcrg-network-coding-satellites-01"
ipr="trust200902">
<!-- category values: std, bcp, info, exp, and historic
ipr values: full3667, noModification3667, noDerivatives3667
you can add the attributes updates="NNNN" and obsoletes="NNNN"
they will automatically be output with "(if approved)" -->
<!-- ***** FRONT MATTER ***** -->
<front>
<!-- The abbreviated title is used in the page header - it is only necessary if the
full title is longer than 39 characters -->
<title abbrev="Network coding and satellites">Network coding and satellites</title>
<author role="editor" fullname="Nicolas Kuhn" initials="N" surname="Kuhn">
<organization>CNES</organization>
<address>
<postal>
<street>18 Avenue Edouard Belin</street>
<city>Toulouse</city>
<region></region>
<code>31400</code>
<country>France</country>
</postal>
<phone></phone>
<email>nicolas.kuhn@cnes.fr</email>
</address>
</author>
<author role="editor" fullname="Emmanuel Lochin" initials="E" surname="Lochin">
<organization>ISAE-SUPAERO</organization>
<address>
<postal>
<street>10 Avenue Edouard Belin</street>
<city>Toulouse</city>
<region></region>
<code>31400</code>
<country>France</country>
</postal>
<phone></phone>
<email>emmanuel.lochin@isae-supaero.fr</email>
</address>
</author>
<date month="Nov" year="2018" />
<!-- If the month and year are both specified and are the current ones, xml2rfc will fill
in the current day for you. If only the current year is specified, xml2rfc will fill
in the current day and month for you. If the year is not the current one, it is
necessary to specify at least a month (xml2rfc assumes day="1" if not specified for the
purpose of calculating the expiry date). With drafts it is normally sufficient to
specify just the year. -->
<!-- Meta-data Declarations -->
<area>Transport</area>
<workgroup>Internet Engineering Task Force</workgroup>
<!-- WG name at the upperleft corner of the doc,
IETF is fine for individual submissions.
If this element is not present, the default is "Network Working Group",
which is used by the RFC Editor as a nod to the history of the IETF. -->
<keyword>SATCOM, network coding</keyword>
<!-- Keywords will be incorporated into HTML output
files in a meta tag but they have no effect on text or nroff
output. If you submit your draft to the RFC Editor, the
keywords will be used for the search engine. -->
<!-- ######################################################-->
<!-- ######################################################-->
<!-- Head of the document -->
<!-- ######################################################-->
<!-- ######################################################-->
<abstract>
<t>This memo details a multi-gateway satellite system to identify multiple opportunities on how coding techniques could be deployed at a wider scale.</t>
</abstract>
</front>
<middle>
<section anchor="sec:introduction" title="Introduction">
<t>Guaranteeing both physical layer robustness and efficient usage of the radio resource has been in the core design of SATellite COMmunication (SATCOM) systems. The trade-off often resided in how much redundancy a system adds to cope from link impairments, without reducing the good-put when the channel quality is high. There is usually enough redundancy to guarantee a Quasi-Error Free transmission. However, physical layer reliability mechanisms may not recover transmission losses (e.g. with a mobile user) and layer 2 (or above) re-transmissions induce 500 ms one-way delay with a geostationary satellite. Further exploiting coding schemes at higher OSI-layers is an opportunity for releasing constraints on the physical layer in such cases and improving the performance of SATCOM systems.</t>
<t>We have noticed an active research activity on coding and SATCOM in the past. That being said, not much has actually made it to industrial developments. In this context, this document aims at identifying opportunities for further usage of coding in these systems.</t>
<t>This document follows the taxonomy of coding techniques for efficient network communications <xref target="RFC8406"> </xref>.</t>
<section anchor="subsec:intro_glossary" title="Glossary">
<t>The glossary of this memo extends the glossary of the taxonomy document <xref target="RFC8406"> </xref> as follows:<list style="symbols">
<t>ACM : Adaptative Coding and Modulation;</t>
<t>BBFRAME: Base-Band FRAME - satellite communication layer 2 encapsulation work as follows: (1) each layer 3 packet is encapsulated with a Generic Stream Encapsulation (GSE) mechanism, (2) GSE packets are gathered to create BBFRAMEs, (3) BBFRAMEs contain information related to how they have to be modulated (4) BBFRAMEs are forwarded to the physical layer;</t>
<t>CPE: Customer Premise Equipment;</t>
<t>DTN: Delay/Disruption Tolerant Network;</t>
<t>EPC: Evolved Packet Core;</t>
<t>ETSI: European Telecommunications Standards Institute;</t>
<t>PEP: Performance Enhanced Proxy - a typical PEP for satellite communications include compression, caching and TCP acceleration;</t>
<t>PLFRAME: Physical Layer FRAME - modulated version of a BBFRAME with additional information (e.g. related to synchronization);</t>
<t>SATCOM: generic term related to all kind of SATellite COMmunications systems;</t>
<t>QoS: Quality-of-Service;</t>
<t>QoE: Quality-of-Experience;</t>
<t>VNF: Virtualized Network Function.</t>
</list></t>
</section>
<section anchor="subsec:intro_requi" title="Requirements Language">
<t>The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in <xref target="RFC2119">RFC 2119</xref>.</t>
</section>
</section>
<!-- ######################################################-->
<!-- ######################################################-->
<!-- Body of the document -->
<!-- ######################################################-->
<!-- ######################################################-->
<!-- ######################################################-->
<!-- New section -->
<!-- ######################################################-->
<section anchor="sec:sat_topo" title="A note on satellite topology">
<t>This section focuses on a generic description of the components composing a generic satellite system and their interaction. A high level description of a multi-gateway satellites network is provided. There exist multiple SATCOM systems, such as those dedicated to broadcasting TV or to IoT applications: depending on the purpose of the SATCOM system, ground segments are specific. This memo lays on SATCOM systems dedicated to Internet access that follows the DVB-S2/RCS2 standards. In this context, the increase of the available capacity that is carried out to end users and the need for reliability results in the need for multiple gateways for one unique satellite platform.</t>
<t>In this context, <xref target="fig:sat_gateway"></xref> shows an example of a multi-gateway satellite system. More details on a generic SATCOM ground segment architecture for a bi-directional Internet access can be found in <xref target="SAT2017"></xref>. We propose a multi-gateway system since some of the use-cases described in this document require multiple gateways. In a multi-gateway system, some elements may be centralized and/or gathered: the relevance of one approach compared to another depends on the deployment scenario. More information on these trade-off discussions can be found in <xref target="SAT2017"></xref>.</t>
<t>It is worth noting that some functional blocks aggregate the traffic coming from multiple users. Even if coding schemes could be applied to any individual traffic, it could also work on an aggregate.</t>
<figure anchor="fig:sat_gateway" title="Data plane functions in a generic satellite multi-gateway system">
<artwork>
+---------------------+
| Application servers |
+---------------------+
^ ^ ^
| | |
-----------------------------------
v v v v v v
+------------------+ +------------------+
| network function | | network function |
| (firewall, PEP) | | (firewall, PEP) |
+------------------+ +------------------+
^ ^ ^ ^
| | IP packets | |
v v v v
+------------------+ +------------------+
| access gateway | | access gateway |
+------------------+ +------------------+
^ ^
| BBFRAMEs |
v v
+------------------+ +------------------+
| physical gateway | | physical gateway |
+------------------+ +------------------+
^ ^
| PLFRAMEs |
v v
+------------------+ +------------------+
| outdoor unit | | outdoor unit |
+------------------+ +------------------+
^ ^
| Satellite link |
v v
+------------------+ +------------------+
| sat terminals | | sat terminals |
+------------------+ +------------------+
^ ^
| |
v v
+------------------+ +------------------+
| end user | | end user |
+------------------+ +------------------+
</artwork>
</figure>
</section>
<!-- ######################################################-->
<!-- New section -->
<!-- ######################################################-->
<section anchor="sec:existing_network_coding" title="Status of reliability schemes in actually deployed satellite systems">
<t><xref target="fig:existing_network"></xref> presents the status of the reliability schemes deployment in satellite systems. The information is based on the taxonomy document <xref target="RFC8406"> </xref> and the notations are the following: End-to-End Coding (E2E), Network Coding (NC), Intra-Flow Coding (IntraF), Inter-Flow Coding (InterF), Single-Path Coding (SP) and Multi-Path Coding (MP).</t>
<t>X1 embodies the source coding that could be used at application level for instance within QUIC or other video streaming applications: this is not specific to SATCOM systems, but is relevant for broadband Internet access discussions.</t>
<t>X2 embodies the physical layer, applied to the PLFRAME, to optimize the satellite capacity usage: at the physical layer, FEC mechanisms can be exploited. This aspect is not in the scope of the WG according to the taxonomoy document <xref target="RFC8406"> </xref>.</t>
<figure anchor="fig:existing_network" title="Reliability schemes in current satellite systems">
<artwork>
+------+-------+---------+---------------+-------+
| | Upper | Middle | Communication layers |
| | Appl. | ware | |
+ +-------+---------+---------------+-------+
| |Source | Network | Packetization | PHY |
| |coding | AL-FEC | UDP/IP | layer |
+------+-------+---------+---------------+-------+
|E2E | X1 | | | |
|NC | | | | |
|IntraF| X1 | | | |
|InterF| | | | X2 |
|SP | X1 | | | X2 |
|MP | | | | |
+------+-------+---------+---------------+-------+
</artwork>
</figure>
<t>Reliability is an inherent part of the physical layer and usually achieved by using coding techniques. Based on public information, coding does not seem to be widely used at higher OSI layers, other than at the application layer.</t>
</section>
<!-- ######################################################-->
<!-- New section -->
<!-- ######################################################-->
<section anchor="sec:use_cases" title="Details on the use cases">
<t>This section details use-cases where coding schemes could improve the overall performance of a SATCOM system (e.g. considering a more efficient usage of the satellite resource, delivery delay, delivery ratio).</t>
<t>It is worth noting that these use-cases focus more on the middleware (e.g. aggregation nodes) and packetization UDP/IP of <xref target="fig:existing_network"></xref>. Indeed, there are already lots of recovery mechanisms at the physical layer in currently deployed systems while E2E source coding are done at the application level. In a multi-gateway SATCOM Internet access, the specific opportunities are more relevant in specific SATCOM components such as the "network function" block or the "access gateway" of <xref target="fig:sat_gateway"></xref>.</t>
<section anchor="subsec:two-way" title="Two way relay channel mode">
<t>This use-case considers a two-way communication between end users, through a satellite link. We propose an illustration of this scenario in <xref target="fig:two_way"></xref>.</t>
<t>Satellite terminal A (resp. B) transmits a flow A (resp. B) to a server hosting NC capabilities, which forward a combination of the two flows to both terminals. This results in non-negligible bandwidth saving and has been demonstrated at ASMS 2010 in Cagliari <xref target="ASMS2010"></xref>. Moreover, with On-Board Processing satellite payloads, the coding operations could be done at the satellite level, thus reducing the end-to-end delay of the communication.</t>
<figure anchor="fig:two_way" title="Network architecture for two way relay channel with NC">
<artwork>
-X}- : traffic from satellite terminal X to the server
={X+Y= : traffic from X and Y combined transmitted from
the server to terminals X and Y
+-----------+ +-----+
|Sat term A |--A}-+ | |
+-----------+ | | | +---------+ +------+
^^ +--| |--A}--| |--A}--| |
|| | SAT |--B}--| Gateway |--B}--|Server|
===={A+B=========| |={A+B=| |={A+B=| |
|| | | +---------+ +------+
vv +--| |
+-----------+ | | |
|Sat term B |--B}-+ | |
+-----------+ +-----+
</artwork>
</figure>
</section>
<section anchor="subsec:rel-mul" title="Reliable multicast">
<t>This use-case considers adding redundancy to a multicast flow depending on what has been received by different end-users, resulting in non-negligible scarce resource saving. We propose an illustration for this scenario in <xref target="fig:rel_multi"></xref>.</t>
<t>A multicast flow (M) is forwarded to both satellite terminals A and B. However packet Ni (resp. Nj) get lost at terminal A (resp. B), and terminal A (resp. B) returns a negative acknowledgement Li (resp. Lj), indicating that the packet is missing. Then either the access gateway or the multicast server includes a repair packet (rather than the individual Ni and Nj packets) in the multicast flow to let both terminals recover from losses. This could be achieved by using NACK-Oriented Reliable Multicast (NORM) <xref target="RFC5740"></xref> in situations where a feedback is possible and desirable, or FLUTE/ALC <xref target ="RFC6726"></xref> when it is not the case. Note that currently both NORM nor FLUTE/ALC are limited to block coding, none of them supporting sliding window encoding schemes <xref target="RFC8406"></xref>.</t>
<figure anchor="fig:rel_multi" title="Network architecture for a reliable multicast with NC">
<artwork>
-Li}- : packet indicated the loss of packet i of a multicast flow
={M== : multicast flow including the missing packets
+-----------+ +-----+
|Sat term A |-Li}-+ | |
+-----------+ | | | +---------+ +------+
^^ +-| |-Li}--| | |Multi |
|| | SAT |-Lj}--| Gateway |--|Cast |
===={M==========| |={M===| | |Server|
|| | | +---------+ +------+
vv +-| |
+-----------+ | | |
|Sat term B |-Lj}-+ | |
+-----------+ +-----+
</artwork>
</figure>
</section>
<section anchor="subsec:hybrid" title="Hybrid access">
<t>This use-case considers the use of multiple path management with coding at the transport level to increase the reliability and/or the total capacity (using multiple path does not guarantee an improvement of both the reliability and the total bandwidth). We propose an illustration for this scenario in <xref target="fig:hyb_access"></xref>. This use-case is inspired from the Broadband Access via Integrated Terrestrial Satellite Systems (BATS) project and has been published as an ETSI Technical Report <xref target="ETSITR2017"></xref>. It is worth nothing that this kind of architecture is also discussed in the MPTCP working group <xref target="I-D.boucadair-mptcp-dhc"></xref>.</t>
<t>To cope with packet loss (due to either end-user mobility or physical layer impairments), coding could be introduced in both the CPE and at the concentrator.</t>
<figure anchor="fig:hyb_access" title="Network architecture for an hybrid access using NC">
<artwork>
-{}- : bidirectional link
+-----+ +----------------+
+-{}-| SAT |-{}-| BACKBONE |
+------+ +------+ | +-----+ | +------------+ |
| End |-{}-| CPE |-{}-| | |CONCENTRATOR| |
| User | | | | +-----+ | +------------+ | +------+
+------+ +------+ |-{}-| DSL |-{}-| |-{}-|Data |
| +-----+ | | |Server|
| | | +------+
| +-----+ | |
+-{}-| LTE |-{}-| |
+-----+ +----------------+
</artwork>
</figure>
</section>
<section anchor="subsec:varying" title="Dealing with varying capacity">
<t>This use-case considers the usage of coding to overcome cases where the wireless link characteristics quickly change overtime and where the physical layer codes could not be made robust in time. This is particularly relevant when end users are moving and the channel shows important variations <xref target="IEEEVT2001"></xref>.</t>
<t>The architecture is recalled in <xref target="fig:varying_capa"></xref>. In these cases, Adaptative Coding and Modulation (ACM) may not adapt the modulation and coding accordingly and remaining errors could be recovered with higher layers redundancy packets. The coding schemes could be applied at the access gateway or the network function block levels to increase the reliability of the transmission. This use-case is mostly relevant for when mobile users are considered or when the chosen band induce a required physical layer coding that may change over time (Q/V bands, Ka band, etc.). Depending on the use-case (e.g. very high frequency bands, mobile users) or depending on the deployment use-cases (e.g. performance of the network between each individual block), the relevance of adding coding is different. Then, depending on the OSI level at which coding is applied, the impact on the satellite terminal is different: coding may be applied on IP packets or on layer-2 proprietary format packets.</t>
<figure anchor="fig:varying_capa" title="Network architecture for dealing with varying link characteristics with NC">
<artwork>
-{}- : bidirectional link
+---------+ +---+ +--------+ +-------+ +--------+
|Satellite| |SAT| |Physical| |Access | |Network |
|Terminal |-{}-| |-{}-|gateway |-{}-|gateway|-{}-|function|
+---------+ +---+ +--------+ +-------+ +--------+
NC NC NC NC
</artwork>
</figure>
</section>
<section anchor="subsec:gat_hand" title="Improving the gateway handovers">
<t>This use-case considers the recovery of packets that may be lost during gateway handovers. Whether this is for off-loading one given equipment or because the transmission quality is not the same on each gateway, changing the transmission gateway may be relevant. However, if gateways are not properly synchronized, this may result in packet loss. During these critical phases, coding can be added to improve the reliability of the transmission and propose a seamless gateway handover. In this case, the coding could be applied at either the access gateway or the network function block. The entity responsible for taking the decision to change the communication gateway and changing the routes is the control plane manager; this entity exploits a management interface.</t>
<t>An example architecture for this use-case is showed in <xref target="fig:gat_hand"></xref>. It is worth noting that depending on the ground architecture <xref target="I-D.chin-nfvrg-cloud-5g-core-structure-yang"></xref> <xref target="SAT2017"></xref>, some equipment might be communalised.</t>
<figure anchor="fig:gat_hand" title="Network architecture for dealing with gateway handover schemes with NC">
<artwork>
-{}- : bidirectional link
! : management interface
NC NC
+--------+ +-------+ +--------+
|Physical| |Access | |Network |
+-{}-|gateway |-{}-|gateway|-{}-|function|
| +--------+ +-------+ +--------+
| ! !
+---------+ +---+ +---------------+
|Satellite| |SAT| | Control plane |
|Terminal |-{}-| | | manager |
+---------+ +---+ +---------------+
| ! !
| +--------+ +-------+ +--------+
+-{}-|Physical|-{}-|Access |-{}-|Network |
|gateway | |gateway| |function|
+--------+ +-------+ +--------+
NC NC
</artwork>
</figure>
</section>
<section anchor="subsec:dtn" title="Delay/Disruption Tolerant Networks">
<t>Establishing communications from terrestrial gateways to aerospace components is a challenge due to the distances involved. As a matter of fact, reliable end-to-end (E2E) communications over such links must cope with long delay and frequent link disruptions. Delay/Disruption Tolerant Networking <xref target="RFC4838"></xref> is a solution to enable reliable internetworking space communications where both standard ad-hoc routing and E2E Internet protocols cannot be used. DTN can also be seen as an alternative solution to cope with satellite communications usually managed by PEP. Therefore, the transport of data over such networks requires the use of replication, erasure codes and multipath protocol schemes <xref target="WANG05"></xref> <xref target="ZHANG06"></xref> to improve the bundle delivery ratio and/or delivery delay. For instance, transport protocols such as LTP <xref target="RFC5326"></xref> for long delay links with connectivity disruptions, use Automatic Repeat-reQuest (ARQ) and unequal error protection to reduce the amount of non-mandatory re-transmissions. The work in <xref target="TOURNOUX10"></xref> proposed upon LTP a robust streaming method based on an on-the-fly coding scheme, where encoding and decoding procedures are done at the source and destination nodes, respectively. However, each link path loss rate may have various order of magnitude and re-encoding at an intermediate node to adapt the redundancy can be mandatory to prevent transmission wasting. This idea has been put forward in <xref target="I-D.zinky-dtnrg-random-binary-fec-scheme"></xref> and <xref target="I-D.zinky-dtnrg-erasure-coding-extension"></xref>, where the authors proposed an encoding process at intermediate DTN nodes to explore the possibilities of Forward Error Correction (FEC) schemes inside the bundle protocol <xref target="RFC5050"></xref>.
Another proposal is the use of erasure coding inside the CCSDS (Consultative Committee for Space Data Systems) architecture <xref target="COLA11"></xref>.
The objective is to extend the CCSDS File Delivery Protocol (CFDP) <xref target="CCSDS-FDP"></xref> with erasure coding capabilities where a Low Density Parity Check (LDPC) <xref target="RFC6816"></xref> code with a large block size is chosen.
Recently, on-the-fly erasure coding schemes <xref target="LACAN08"></xref> <xref target="SUNDARARAJAN08"></xref> <xref target="TOURNOUX11"></xref> have shown their benefits in terms of recovery capability and configuration complexity compared to traditional FEC schemes. Using a feedback path when available, on-the-fly schemes can be used to enable E2E reliable communication over DTN with adaptive re-encoding as proposed in <xref target="THAI15"></xref>.
</t>
</section>
</section>
<!-- ######################################################-->
<!-- New section -->
<!-- ######################################################-->
<section anchor="sec:deploy" title="Research challenges">
<section anchor="sec:deploy_deployability" title="Deployability in current SATCOM systems">
<t>SATCOM systems typically feature Performance Enhancement Proxy <xref target="RFC3135">RFC 3135</xref> which could be relevant to host coding mechanisms and thus support the use-cases that have been discussed in <xref target="sec:use_cases"></xref>. PEP usually split TCP end-to-end connections and forward TCP packets to the satellite baseband gateway that deals with layer 2 and layer 1 encapsulations. Deploying coding schemes at the TCP level in these equipments could be relevant and independent from the specificities of a SATCOM link. That being said, we can notice a research issue in the recurrent trade-off in SATCOM systems that is related to the amount of reliability that you introduce in the first transmission to guarantee a better end-user QoE and the usage of the scarce resource.</t>
</section>
<section anchor="sec:deploy_nfv" title="Interaction with virtualization">
<t>Related to the foreseen virtualized network infrastructure, the coding schemes could be proposed as Virtual Network Function (VNF) and their deployability enhanced. The architecture for the next generation of SATCOM ground segments would rely on a virtualized environment. This trend can also be seen, making the discussions on the deployability of coding in SATCOM extendable to other deployment scenarios <xref target="I-D.chin-nfvrg-cloud-5g-core-structure-yang"> </xref>. As one example, the coding VNF functions deployment in a virtualized environment is presented in <xref target="I-D.vazquez-nfvrg-netcod-function-virtualization"> </xref>. A research challenge would be the optimization of the NFV service function chaining, considering a virtualized infrastructure and other SATCOM specific functions, to guarantee an efficient radio resource utilization and easy to deploy SATCOM services.</t>
</section>
</section>
<!-- ######################################################-->
<!-- New section -->
<!-- ######################################################-->
<section anchor="sec:conclu" title="Conclusion">
<t>This document presents the current deployment of coding in some satellite telecommunications systems along with a discussion on the multiple opportunities to introduce these techniques at a wider scale.</t>
<t>Even if this document focuses on satellite systems, it is worth pointing out that the some scenarios proposed may be relevant to other wireless telecommunication systems. As one example, the generic architecture proposed in <xref target="fig:sat_gateway"></xref> may be mapped to cellular networks as follows: the 'network function' block gather some of the functions of the Evolved Packet Core subsystem, while the 'access gateway' and 'physical gateway' blocks gather the same type of functions as the Universal Mobile Terrestrial Radio Access Network. This mapping extends the opportunities identified in this draft since they may be also relevant for cellular networks.</t>
</section>
<!-- ######################################################-->
<!-- ######################################################-->
<!-- Tail of the document -->
<!-- ######################################################-->
<!-- ######################################################-->
<section anchor="sec:acknowledgements" title="Acknowledgements">
<t>Many thanks to Tomaso de Cola, Vincent Roca, Lloyd Wood and Marie-Jose Montpetit for their help in writting this document.</t>
</section>
<section anchor="sec:IANA" title="IANA Considerations">
<t>This memo includes no request to IANA.</t>
</section>
<section anchor="sec:ecurity" title="Security Considerations">
<t>Security considerations are inherent to any access network. SATCOM systems introduce standard security mechanisms. In particular, there are some specificities related to the fact that all users under the coverage can record all the packets that are being transmitted, such as in LTE networks. On the specific scenario of NC in SATCOM systems, there are no specific security considerations.<!--See <xref target="RFC3552">RFC 3552</xref> for a guide.--></t>
</section>
</middle>
<!-- *****BACK MATTER ***** -->
<back>
<!-- References split into informative and normative -->
<!-- There are 2 ways to insert reference entries from the citation libraries:
1. define an ENTITY at the top, and use "ampersand character"RFC2629; here (as shown)
2. simply use a PI "less than character"?rfc include="reference.RFC.2119.xml"?> here
(for I-Ds: include="reference.I-D.narten-iana-considerations-rfc2434bis.xml")
Both are cited textually in the same manner: by using xref elements.
If you use the PI option, xml2rfc will, by default, try to find included files in the same
directory as the including file. You can also define the XML_LIBRARY environment variable
with a value containing a set of directories to search. These can be either in the local
filing system or remote ones accessed by http (http://domain/dir/... ).-->
<references title="Normative References">
&RFC2119;
</references>
<references title="Informative References">
<?rfc include="reference.RFC.3135.xml"?>
<?rfc include="reference.RFC.4838.xml"?>
<?rfc include="reference.RFC.5050.xml"?>
<?rfc include="reference.RFC.5326.xml"?>
<?rfc include="reference.RFC.5740.xml"?>
<!-- <?rfc include="reference.RFC.5865.xml"?> -->
<?rfc include="reference.RFC.6816.xml"?>
<?rfc include="reference.RFC.6726.xml"?>
<?rfc include="reference.I-D.boucadair-mptcp-dhc.xml"?>
<?rfc include="reference.I-D.chin-nfvrg-cloud-5g-core-structure-yang.xml"?>
<?rfc include="reference.RFC.8406.xml"?>
<?rfc include="reference.I-D.vazquez-nfvrg-netcod-function-virtualization.xml"?>
<?rfc include="reference.I-D.zinky-dtnrg-random-binary-fec-scheme.xml"?>
<?rfc include="reference.I-D.zinky-dtnrg-erasure-coding-extension.xml"?>
<reference anchor="ETSITR2017">
<front>
<title>Satellite Earth Stations and Systems (SES); Multi-link routing scheme in hybrid access network with heterogeneous links </title>
<author initials="" surname="">
</author>
<date year="2017" />
</front>
<seriesInfo name="ETSI TR" value="103 351" />
</reference>
<reference anchor="ASMS2010">
<front>
<title>Demonstration at opening session of ASMS 2010</title>
<author initials="T" surname="De Cola">
</author>
<author initials="et" surname="al.">
</author>
<date year="2010" />
</front>
<seriesInfo name="ASMS" value="" />
</reference>
<reference anchor="IEEEVT2001">
<front>
<title>Statistical modeling of the LMS channel</title>
<author initials="F.P" surname="Fontan">
</author>
<author initials="M" surname="Vazquez-Castro">
</author>
<author initials="C.E" surname="Cabado">
</author>
<author initials="J.P" surname="Garcia">
</author>
<author initials="E" surname="Kubista">
</author>
<date year="2001" />
</front>
<seriesInfo name="BEER Transactions on Vehicular Technology" value="vol. 50 issue 6" />
</reference>
<reference anchor="SAT2017">
<front>
<title>Software-defined satellite cloud RAN</title>
<author initials="T" surname="Ahmed">
</author>
<author initials="E" surname="Dubois">
</author>
<author initials="JB" surname="Dupe">
</author>
<author initials="R" surname="Ferrus">
</author>
<author initials="P" surname="Gelard">
</author>
<author initials="N" surname="Kuhn">
</author>
<date year="2017" />
</front>
<seriesInfo name="Int. J. Satell. Commun. Network." value="vol. 36" />
</reference>
<reference anchor="WANG05">
<front>
<title>Erasure-coding based routing for opportunistic networks</title>
<author initials="Y" surname="Wang">
</author>
<author initials="et" surname="al.">
</author>
<date year="2005" />
</front>
<seriesInfo name="Proceedings of the ACM SIGCOMM workshop on Delay-tolerant networking" value=""/>
</reference>
<reference anchor="ZHANG06">
<front>
<title>On the benefits of random linear coding for unicast applications in disruption tolerant networks</title>
<author initials="X" surname="Zhang">
</author>
<author initials="et" surname="al.">
</author>
<date year="2006" />
</front>
<seriesInfo name="Proceedings of the 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks" value=""/>
</reference>
<reference anchor="TOURNOUX10">
<front>
<title>On the benefits of random linear coding for unicast applications in disruption tolerant networks</title>
<author initials="P" surname="Tournoux">
</author>
<author initials="E" surname="Lochin">
</author>
<author initials="J" surname="Leguay">
</author>
<author initials="J" surname="Lacan">
</author>
<date year="2010" />
</front>
<seriesInfo name="Proceedings of the IEEE International Conference on Communications" value=""/>
</reference>
<reference anchor="COLA11">
<front>
<title>Reliability options for data communications in the future deep-space missions</title>
<author initials="T" surname="De Cola">
</author>
<author initials="E" surname="Paolini">
</author>
<author initials="G" surname="Liva">
</author>
<author initials="G" surname="Calzolari">
</author>
<date year="2011" />
</front>
<seriesInfo name="Proceedings of the IEEE" value="vol. 99 issue 11"/>
</reference>
<reference anchor="CCSDS-FDP">
<front>
<title>CCSDS File Delivery Protocol, Recommendation for Space Data System Standards</title>
<author initials="" surname="">
</author>
<date year="2007" />
</front>
<seriesInfo name="CCSDS 727.0-B-4, Blue Book" value="num. 3" />
</reference>
<reference anchor="LACAN08">
<front>
<title>Rethinking reliability for long-delay networks</title>
<author initials="J." surname="Lacan">
</author>
<author initials="E." surname="Lochin">
</author>
<date month="October" year="2008"/>
</front>
<seriesInfo name="International Workshop on Satellite and Space Communications" value=""/>
</reference>
<reference anchor="SUNDARARAJAN08">
<front>
<title>ARQ for network coding</title>
<author initials="J." surname="Sundararajan">
</author>
<author initials="D." surname="Shah">
</author>
<author initials="M." surname="Medard">
</author>
<date month="July" year="2008"/>
</front>
<seriesInfo name="IEEE Int. Symp. on Information Theory" value=""/>
</reference>
<reference anchor="TOURNOUX11">
<front>
<title>On-the-fly erasure coding for real-time video applications</title>
<author initials="P" surname="Tournoux">
</author>
<author initials="E." surname="Lochin">
</author>
<author initials="J." surname="Lacan">
</author>
<author initials="A." surname="Bouabdallah">
</author>
<author initials="V." surname="Roca">
</author>
<date month="August" year="2011"/>
</front>
<seriesInfo name="IEEE Trans. on Multimedia" value="vol. 13 issue 4"/>
</reference>
<reference anchor="THAI15">
<front>
<title>Enabling E2E reliable communications with adaptive re-encoding over delay tolerant networks</title>
<author initials="T" surname="Thai">
</author>
<author initials="V." surname="Chaganti">
</author>
<author initials="E." surname="Lochin">
</author>
<author initials="J." surname="Lacan">
</author>
<author initials="E." surname="Dubois">
</author>
<author initials="P." surname="Gelard">
</author>
<date month="June" year="2015"/>
</front>
<seriesInfo name="Proceedings of the IEEE International Conference on Communications" value=""/>
</reference>
</references>
</back>
</rfc>