-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathyolov8_ui.py
102 lines (79 loc) · 3.8 KB
/
yolov8_ui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import gradio as gr
from ultralytics import YOLO
import warnings
warnings.filterwarnings("ignore")
class YOLOv8WebUI:
def __init__(self):
pass
def format_options(self, checkbox):
"""Formats the option list into an object."""
option = {}
for check in checkbox:
option[check] = True
return option
def inference(self, type, input, checkbox, conf, iou, device, max_det, line_width, cpu):
"""Runs object detection on the input image."""
# Load models
if type == "detect":
model = YOLO("../../weights/yolov8/yolov8n.pt")
elif type == "seg":
model = YOLO('../../weights/yolov8/yolov8n-seg.pt')
elif type == "cls":
model = YOLO('../../weights/yolov8/yolov8n-cls.pt')
elif type == "pose":
model = YOLO("../../weights/yolov8/yolov8n-pose.pt")
# Set device to CPU if specified
if cpu:
device = "cpu"
# Set line width to None if not specified
if not line_width:
line_width = None
# Format the options
option = self.format_options(checkbox)
# Run object detection and plot the result
res = model(input, conf=conf, iou=iou, device=device, max_det=max_det, line_width=line_width, **option)
plotted = res[0].plot()
return plotted
def train(self, type: str, data_path: str, weights_path: str, epochs: int, batch_size: int, lr: float, device: str,
img_size: int, resume: bool):
"""Trains the YOLOv8 model."""
# Load model
if type in self.model_files:
model = YOLO(self.model_files[type])
else:
raise ValueError(f"Invalid task type: {type}")
# Train model
model.train(data_path=data_path, weights_path=weights_path, epochs=epochs, batch_size=batch_size, lr=lr,
device=device, img_size=img_size, resume=resume)
def launch(self):
"""Launches the Gradio interface."""
# Create the UI
with gr.Blocks() as app:
# Header
gr.Markdown("# YOLOv8-WebUI")
# Tabs
with gr.Tabs():
# Inference tab
with gr.TabItem("inference"):
with gr.Row():
input = gr.Image()
output = gr.Image()
type = gr.Radio(["detect", "seg", "cls", "pose"], value="detect", label="Tasks")
# Options
conf = gr.Slider(minimum=0, maximum=1, value=0.25, step=0.01, interactive=True, label="conf")
iou = gr.Slider(minimum=0, maximum=1, value=0.7, step=0.01, interactive=True, label="iou")
checkbox = gr.CheckboxGroup(
["half", "show", "save", "save_txt", "save_conf", "save_crop", "hide_labels", "hide_conf", "vid_stride",
"visualize", "augment", "agnostic_nms", "retina_masks", "boxes"], label="Options", value=["boxes"])
device = gr.Number(value=0, label="device", interactive=True, default="cpu",precision=0)
cpu = gr.Checkbox(label="cpu", interactive=True)
max_det = gr.Number(value=300, label="max_det", interactive=True, precision=0)
line_width = gr.Number(value=0, label="line_width", interactive=True, precision=0)
inference_button = gr.Button("inference")
# Run object detection on the input image when the button is clicked
inference_button.click(self.inference, inputs=[type, input, checkbox, conf, iou, device, max_det, line_width, cpu],
outputs=output)
app.launch(share=True)
if __name__ == '__main__':
web_ui = YOLOv8WebUI()
web_ui.launch()