-
Notifications
You must be signed in to change notification settings - Fork 218
/
franka_deformable.py
324 lines (257 loc) · 14.2 KB
/
franka_deformable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
# Copyright (c) 2018-2022, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from omniisaacgymenvs.tasks.base.rl_task import RLTask
from omniisaacgymenvs.robots.articulations.franka import Franka
from omniisaacgymenvs.robots.articulations.views.franka_view import FrankaView
from omni.isaac.core.prims import RigidPrim, RigidPrimView
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.utils.stage import get_current_stage, add_reference_to_stage
from omni.isaac.core.utils.torch.transformations import *
from omni.isaac.core.utils.torch.rotations import *
from omni.isaac.nucleus import get_assets_root_path
import omni.isaac.core.utils.deformable_mesh_utils as deformableMeshUtils
from omni.isaac.core.materials.deformable_material import DeformableMaterial
from omniisaacgymenvs.views.deformable_prim_view import DeformablePrimView
from omni.physx.scripts import physicsUtils
import numpy as np
import torch
import math
from pxr import Usd, UsdGeom, Gf, UsdPhysics, PhysxSchema
class FrankaDeformableTask(RLTask):
def __init__(
self,
name,
sim_config,
env,
offset=None
) -> None:
self.update_config(sim_config)
self.dt = 1/60.
self._num_observations = 39
self._num_actions = 9
RLTask.__init__(self, name, env)
return
def update_config(self, sim_config):
self._sim_config = sim_config
self._cfg = sim_config.config
self._task_cfg = sim_config.task_config
self._num_envs = self._task_cfg["env"]["numEnvs"]
self._env_spacing = self._task_cfg["env"]["envSpacing"]
self._max_episode_length = self._task_cfg["env"]["episodeLength"]
self.dof_vel_scale = self._task_cfg["env"]["dofVelocityScale"]
self.action_scale = self._task_cfg["env"]["actionScale"]
def set_up_scene(self, scene) -> None:
self.stage = get_current_stage()
self.assets_root_path = get_assets_root_path()
if self.assets_root_path is None:
carb.log_error("Could not find Isaac Sim assets folder")
self.get_franka()
self.get_beaker()
self.get_deformable_tube()
super().set_up_scene(scene=scene, replicate_physics=False)
self._frankas = FrankaView(prim_paths_expr="/World/envs/.*/franka", name="franka_view")
self.deformableView = DeformablePrimView(
prim_paths_expr="/World/envs/.*/tube/mesh", name="deformabletube_view", reset_xform_properties=False
)
self.deformableView._non_root_link = True # avoid XformPrimView post_reset
scene.add(self.deformableView)
scene.add(self._frankas)
scene.add(self._frankas._hands)
scene.add(self._frankas._lfingers)
scene.add(self._frankas._rfingers)
return
def initialize_views(self, scene):
super().initialize_views(scene)
if scene.object_exists("franka_view"):
scene.remove_object("franka_view", registry_only=True)
if scene.object_exists("hands_view"):
scene.remove_object("hands_view", registry_only=True)
if scene.object_exists("lfingers_view"):
scene.remove_object("lfingers_view", registry_only=True)
if scene.object_exists("rfingers_view"):
scene.remove_object("rfingers_view", registry_only=True)
if scene.object_exists("deformabletube_view"):
scene.remove_object("deformabletube_view", registry_only=True)
self._frankas = FrankaView(
prim_paths_expr="/World/envs/.*/franka", name="franka_view"
)
self.deformableView = DeformablePrimView(
prim_paths_expr="/World/envs/.*/tube/mesh", name="deformabletube_view", reset_xform_properties=False
)
self.deformableView._non_root_link = True # avoid XformPrimView post_reset
scene.add(self._frankas)
scene.add(self._frankas._hands)
scene.add(self._frankas._lfingers)
scene.add(self._frankas._rfingers)
scene.add(self.deformableView)
def get_franka(self):
franka = Franka(
prim_path=self.default_zero_env_path + "/franka",
name="franka",
orientation=torch.tensor([1.0, 0.0, 0.0, 0.0]),
translation=torch.tensor([0.0, 0.0, 0.0]),
)
self._sim_config.apply_articulation_settings(
"franka", get_prim_at_path(franka.prim_path), self._sim_config.parse_actor_config("franka")
)
franka.set_franka_properties(stage=self.stage, prim=franka.prim)
def get_beaker(self):
_usd_path = self.assets_root_path + "/Isaac/Props/Beaker/beaker_500ml.usd"
mesh_path = self.default_zero_env_path + "/beaker"
add_reference_to_stage(_usd_path, mesh_path)
beaker = RigidPrim(
prim_path=mesh_path+"/beaker",
name="beaker",
position=torch.tensor([0.5, 0.2, 0.095]),
)
self._sim_config.apply_articulation_settings("beaker", beaker.prim, self._sim_config.parse_actor_config("beaker"))
def get_deformable_tube(self):
_usd_path = self.assets_root_path + "/Isaac/Props/DeformableTube/tube.usd"
mesh_path = self.default_zero_env_path + "/tube"
add_reference_to_stage(_usd_path, mesh_path)
skin_mesh = get_prim_at_path(mesh_path)
physicsUtils.setup_transform_as_scale_orient_translate(skin_mesh)
physicsUtils.set_or_add_translate_op(skin_mesh, (0.6, 0.0, 0.005))
physicsUtils.set_or_add_orient_op(skin_mesh, Gf.Rotation(Gf.Vec3d([0, 0, 1]), 90).GetQuat())
def get_observations(self) -> dict:
franka_dof_pos = self._frankas.get_joint_positions(clone=False)
franka_dof_vel = self._frankas.get_joint_velocities(clone=False)
self.franka_dof_pos = franka_dof_pos
dof_pos_scaled = (
2.0 * (franka_dof_pos - self.franka_dof_lower_limits)
/ (self.franka_dof_upper_limits - self.franka_dof_lower_limits)
- 1.0
)
self.lfinger_pos, _ = self._frankas._lfingers.get_world_poses(clone=False)
self.rfinger_pos, _ = self._frankas._rfingers.get_world_poses(clone=False)
self.gripper_site_pos = (self.lfinger_pos + self.rfinger_pos)/2 - self._env_pos
tube_positions = self.deformableView.get_simulation_mesh_nodal_positions(clone=False)
tube_velocities = self.deformableView.get_simulation_mesh_nodal_velocities(clone=False)
self.tube_front_positions = tube_positions[:, 200, :] - self._env_pos
self.tube_front_velocities = tube_velocities[:, 200, :]
self.tube_back_positions = tube_positions[:, -1, :] - self._env_pos
self.tube_back_velocities = tube_velocities[:, -1, :]
front_to_gripper = self.tube_front_positions - self.gripper_site_pos
to_front_goal = self.front_goal_pos - self.tube_front_positions
to_back_goal = self.back_goal_pos - self.tube_back_positions
self.obs_buf = torch.cat(
(
dof_pos_scaled,
franka_dof_vel * self.dof_vel_scale,
front_to_gripper,
to_front_goal,
to_back_goal,
self.tube_front_positions,
self.tube_front_velocities,
self.tube_back_positions,
self.tube_back_velocities,
),
dim=-1,
)
observations = {
self._frankas.name: {
"obs_buf": self.obs_buf
}
}
return observations
def pre_physics_step(self, actions) -> None:
if not self.world.is_playing():
return
reset_env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if len(reset_env_ids) > 0:
self.reset_idx(reset_env_ids)
self.actions = actions.clone().to(self._device)
targets = self.franka_dof_targets + self.franka_dof_speed_scales * self.dt * self.actions * self.action_scale
self.franka_dof_targets[:] = tensor_clamp(targets, self.franka_dof_lower_limits, self.franka_dof_upper_limits)
self.franka_dof_targets[:, -1] = self.franka_dof_targets[:, -2]
env_ids_int32 = torch.arange(self._frankas.count, dtype=torch.int32, device=self._device)
self._frankas.set_joint_position_targets(self.franka_dof_targets)
def reset_idx(self, env_ids):
indices = env_ids.to(dtype=torch.int32)
num_indices = len(indices)
pos = self.franka_default_dof_pos
dof_pos = torch.zeros((num_indices, self._frankas.num_dof), device=self._device)
dof_vel = torch.zeros((num_indices, self._frankas.num_dof), device=self._device)
dof_pos[:, :] = pos
self.franka_dof_targets[env_ids, :] = pos
self.franka_dof_pos[env_ids, :] = pos
self._frankas.set_joint_position_targets(self.franka_dof_targets[env_ids], indices=indices)
self._frankas.set_joint_positions(dof_pos, indices=indices)
self._frankas.set_joint_velocities(dof_vel, indices=indices)
self.deformableView.set_simulation_mesh_nodal_positions(self.initial_tube_positions[env_ids], indices)
self.deformableView.set_simulation_mesh_nodal_velocities(self.initial_tube_velocities[env_ids], indices)
# bookkeeping
self.reset_buf[env_ids] = 0
self.progress_buf[env_ids] = 0
def post_reset(self):
self.franka_default_dof_pos = torch.tensor(
[0.00, 0.63, 0.00, -2.15, 0.00, 2.76, 0.75, 0.02, 0.02], device=self._device
)
self.actions = torch.zeros((self._num_envs, self.num_actions), device=self._device)
self.front_goal_pos = torch.tensor([0.36, 0.0, 0.23], device=self._device).repeat((self._num_envs, 1))
self.back_goal_pos = torch.tensor([0.5, 0.2, 0.0], device=self._device).repeat((self._num_envs, 1))
self.goal_hand_rot = torch.tensor([0.0, 1.0, 0.0, 0.0], device=self._device).repeat((self.num_envs, 1))
self.lfinger_pos, _ = self._frankas._lfingers.get_world_poses(clone=False)
self.rfinger_pos, _ = self._frankas._rfingers.get_world_poses(clone=False)
self.gripper_site_pos = (self.lfinger_pos + self.rfinger_pos)/2 - self._env_pos
self.initial_tube_positions = self.deformableView.get_simulation_mesh_nodal_positions()
self.initial_tube_velocities = self.deformableView.get_simulation_mesh_nodal_velocities()
self.tube_front_positions = self.initial_tube_positions[:, 200, :] - self._env_pos
self.tube_front_velocities = self.initial_tube_velocities[:, 200, :]
self.tube_back_positions = self.initial_tube_positions[:, -1, :] - self._env_pos
self.tube_back_velocities = self.initial_tube_velocities[:, -1, :]
self.num_franka_dofs = self._frankas.num_dof
self.franka_dof_pos = torch.zeros((self.num_envs, self.num_franka_dofs), device=self._device)
dof_limits = self._frankas.get_dof_limits()
self.franka_dof_lower_limits = dof_limits[0, :, 0].to(device=self._device)
self.franka_dof_upper_limits = dof_limits[0, :, 1].to(device=self._device)
self.franka_dof_speed_scales = torch.ones_like(self.franka_dof_lower_limits)
self.franka_dof_speed_scales[self._frankas.gripper_indices] = 0.1
self.franka_dof_targets = torch.zeros(
(self._num_envs, self.num_franka_dofs), dtype=torch.float, device=self._device
)
# randomize all envs
indices = torch.arange(self._num_envs, dtype=torch.int64, device=self._device)
self.reset_idx(indices)
def calculate_metrics(self) -> None:
goal_distance_error = torch.norm(self.tube_back_positions[:, 0:2] - self.back_goal_pos[:, 0:2], p = 2, dim = -1)
goal_dist_reward = 1.0 / (5*goal_distance_error + .025)
current_z_level = self.tube_back_positions[:, 2:3]
z_lift_level = torch.where(
goal_distance_error < 0.07, torch.zeros_like(current_z_level), torch.ones_like(current_z_level)*0.18
)
front_lift_error = torch.norm(current_z_level - z_lift_level, p = 2, dim = -1)
front_lift_reward = 1.0 / (5*front_lift_error + .025)
rewards = goal_dist_reward + 4*front_lift_reward
self.rew_buf[:] = rewards
def is_done(self) -> None:
self.reset_buf = torch.where(self.progress_buf >= self._max_episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf)
self.reset_buf = torch.where(self.tube_front_positions[:, 0] < 0, torch.ones_like(self.reset_buf), self.reset_buf)
self.reset_buf = torch.where(self.tube_front_positions[:, 0] > 1.0, torch.ones_like(self.reset_buf), self.reset_buf)
self.reset_buf = torch.where(self.tube_front_positions[:, 1] < -1.0, torch.ones_like(self.reset_buf), self.reset_buf)
self.reset_buf = torch.where(self.tube_front_positions[:, 1] > 1.0, torch.ones_like(self.reset_buf), self.reset_buf)