-
Notifications
You must be signed in to change notification settings - Fork 536
/
C2BPProcessor.cs
477 lines (417 loc) · 20 KB
/
C2BPProcessor.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
using System.Collections.Generic;
using System.Drawing;
using System.Collections;
namespace iSpyApplication
{
class C2BpProcessor
{
// First position rectangles more than half as wide as the bin.
// Then position the remaining rectangles in two columns.
public void AlgOneColumn(int binWidth, Rectangle[] rects)
{
// Find the wide rectangles.
ArrayList wideCol = new ArrayList();
ArrayList narrowCol = new ArrayList();
for (int i = 0; i <= rects.Length - 1; i++)
{
if (rects[i].Width > binWidth / 2)
wideCol.Add(rects[i]);
else
narrowCol.Add(rects[i]);
}
// Sort the wide rectangles by width.
Rectangle[] wideArray = new Rectangle[wideCol.Count];
for (int i = 0; i <= wideCol.Count - 1; i++)
{
wideArray[i] = (Rectangle)wideCol[i];
}
System.Array.Sort(wideArray, new WidthComparer());
// Sort the narrow rectangles by height.
Rectangle[] narrowArray = new Rectangle[narrowCol.Count];
for (int i = 0; i <= narrowCol.Count - 1; i++)
{
narrowArray[i] = (Rectangle)narrowCol[i];
}
System.Array.Sort(narrowArray, new HeightComparer());
// Arrange the wide rectangles.
int x = 0;
int y = 0;
for (int i = 0; i <= wideArray.Length - 1; i++)
{
wideArray[i].X = x;
wideArray[i].Y = y;
y += wideArray[i].Height;
}
// Arrange the narrow rectangles.
if (narrowArray.Length > 0)
{
int rowHeight = narrowArray[0].Height;
for (int i = 0; i <= narrowArray.Length - 1; i++)
{
if (x + narrowArray[i].Width <= binWidth)
{
// Add to this row.
narrowArray[i].X = x;
narrowArray[i].Y = y;
}
else
{
// Start a new row.
x = 0;
y += rowHeight;
rowHeight = narrowArray[i].Height;
narrowArray[i].X = x;
narrowArray[i].Y = y;
}
x += narrowArray[i].Width;
}
}
// Combine the results into the rect array.
System.Array.Copy(wideArray, rects, wideArray.Length);
System.Array.Copy(narrowArray, 0, rects, wideArray.Length, narrowArray.Length);
}
// Sort rectangles by height.
// Fill in by rows in a single column.
public void AlgSortByHeight(int binWidth, Rectangle[] rects)
{
// Sort by height.
System.Array.Sort(rects, new HeightComparer());
// Fill in one column.
SubAlgFillOneColumn(binWidth, rects);
}
// Sort rectangles by width.
// Fill in by rows in a single column.
public void AlgSortByWidth(int binWidth, Rectangle[] rects)
{
// Sort by height.
System.Array.Sort(rects, new WidthComparer());
// Fill in one column.
SubAlgFillOneColumn(binWidth, rects);
}
// Sort rectangles by area.
// Fill in by rows in a single column.
public void AlgSortByArea(int binWidth, Rectangle[] rects)
{
// Sort by height.
System.Array.Sort(rects, new AreaComparer());
// Fill in one column.
SubAlgFillOneColumn(binWidth, rects);
}
// Sort rectangles by squareness.
// Fill in by rows in a single column.
public void AlgSortBySquareness(int binWidth, Rectangle[] rects)
{
// Sort by height.
System.Array.Sort(rects, new SquarenessComparer());
// Fill in one column.
SubAlgFillOneColumn(binWidth, rects);
}
// Fill in by rows in a single column.
public void SubAlgFillOneColumn(int binWidth, Rectangle[] rects)
{
// Make lists of positioned and not positioned rectangles.
List<Rectangle> notPositioned = new List<Rectangle>();
List<Rectangle> positioned = new List<Rectangle>();
for (int i = 0; i <= rects.Length - 1; i++)
notPositioned.Add(rects[i]);
// Arrange the rectangles.
int x = 0;
int y = 0;
int rowHgt = 0;
while (notPositioned.Count > 0)
{
// Find the next rectangle that will fit on this row.
int nextRect = -1;
for (int i = 0; i <= notPositioned.Count - 1; i++)
{
if (x + notPositioned[i].Width <= binWidth)
{
nextRect = i;
break;
}
}
// If we didn't find a rectangle that fits, start a new row.
if (nextRect < 0)
{
y += rowHgt;
x = 0;
rowHgt = 0;
nextRect = 0;
}
// Position the selected rectangle.
Rectangle rect = notPositioned[nextRect];
rect.X = x;
rect.Y = y;
x += rect.Width;
if (rowHgt < rect.Height) rowHgt = rect.Height;
// Move the rectangle into the positioned list.
positioned.Add(rect);
notPositioned.RemoveAt(nextRect);
}
// Prepare the results.
for (int i = 0; i <= positioned.Count - 1; i++)
rects[i] = positioned[i];
}
// Start the recursion.
public void AlgFillByStripes(int binWidth, Rectangle[] rects)
{
// Sort by height.
Rectangle[] bestRects = (Rectangle[])rects.Clone();
System.Array.Sort(bestRects, new HeightComparer());
// Make variables to track and record the best solution.
bool[] isPositioned = new bool[bestRects.Length];
int numUnpositioned = bestRects.Length;
// Fill by stripes.
int maxY = 0;
for (int i = 0; i <= rects.Length - 1; i++)
{
// See if this rectangle is positioned.
if (!isPositioned[i])
{
// Start a new stripe.
numUnpositioned -= 1;
isPositioned[i] = true;
bestRects[i].X = 0;
bestRects[i].Y = maxY;
FillBoundedArea(
bestRects[i].Width, binWidth, maxY,
maxY + bestRects[i].Height,
ref numUnpositioned, ref bestRects, ref isPositioned);
if (numUnpositioned == 0) break;
maxY += bestRects[i].Height;
}
}
// Save the best solution.
System.Array.Copy(bestRects, rects, rects.Length);
}
// Fill the unbounded area, trying to the smallest maximum Y coordinate.
// Set the following for the best solution we find:
// xmin, xmax, etc. - Bounds of the rectangle we are trying to fill.
// num_unpositioned - The number of rectangles not yet positioned in this solution.
// Used to control the recursion.
// rects() - All rectangles for the problem, some positioned and others not.
// Initially this is the partial solution we are working from.
// At end, this is the best solution we could find.
// is_positioned() - Indicates which rectangles are positioned in this solution.
// max_y - The largest Y value for this solution.
private void FillUnboundedArea(
int xmin, int xmax, int ymin,
ref int numUnpositioned, ref Rectangle[] rects, ref bool[] isPositioned)
{
if (numUnpositioned <= 0) return;
// Save a copy of the solution so far.
int bestNumUnpositioned = numUnpositioned;
Rectangle[] bestRects = (Rectangle[])rects.Clone();
bool[] bestIsPositioned = (bool[])isPositioned.Clone();
// Currently we have no solution for this area.
int bestMaxy = int.MaxValue;
// Loop through the available rectangles.
for (int i = 0; i <= rects.Length - 1; i++)
{
// See if (this rectangle is not yet positioned and will fit.
if (!isPositioned[i] &&
rects[i].Width <= xmax - xmin)
{
// It will fit. Try it.
// **************************************************
// Divide the remaining area horizontally.
int test1NumUnpositioned = numUnpositioned - 1;
Rectangle[] test1Rects = (Rectangle[])rects.Clone();
bool[] test1IsPositioned = (bool[])isPositioned.Clone();
test1Rects[i].X = xmin;
test1Rects[i].Y = ymin;
test1IsPositioned[i] = true;
// Fill the area on the right.
FillBoundedArea(xmin + rects[i].Width, xmax, ymin, ymin + rects[i].Height,
ref test1NumUnpositioned, ref test1Rects, ref test1IsPositioned);
// Fill the area on the bottom.
FillUnboundedArea(xmin, xmax, ymin + rects[i].Height,
ref test1NumUnpositioned, ref test1Rects, ref test1IsPositioned);
// Learn about the test solution.
int test1Maxy =
MaxY(test1Rects, test1IsPositioned);
// See if (this is better than the current best solution.
if ((test1NumUnpositioned == 0) && (test1Maxy < bestMaxy))
{
// The test is better. Save it.
bestMaxy = test1Maxy;
bestRects = test1Rects;
bestIsPositioned = test1IsPositioned;
bestNumUnpositioned = test1NumUnpositioned;
}
// **************************************************
// Divide the remaining area vertically.
int test2NumUnpositioned = numUnpositioned - 1;
Rectangle[] test2Rects = (Rectangle[])rects.Clone();
bool[] test2IsPositioned = (bool[])isPositioned.Clone();
test2Rects[i].X = xmin;
test2Rects[i].Y = ymin;
test2IsPositioned[i] = true;
// Fill the area on the right.
FillUnboundedArea(xmin + rects[i].Width, xmax, ymin,
ref test2NumUnpositioned, ref test2Rects, ref test2IsPositioned);
// Fill the area on the bottom.
FillUnboundedArea(xmin, xmin + rects[i].Width, ymin + rects[i].Height,
ref test2NumUnpositioned, ref test2Rects, ref test2IsPositioned);
// Learn about the test solution.
int test2Maxy =
MaxY(test2Rects, test2IsPositioned);
// See if (this is better than the current best solution.
if ((test2NumUnpositioned == 0) && (test2Maxy < bestMaxy))
{
// The test is better. Save it.
bestMaxy = test2Maxy;
bestRects = test2Rects;
bestIsPositioned = test2IsPositioned;
bestNumUnpositioned = test2NumUnpositioned;
}
} // End trying this rectangle.
} // End looping through the rectangles.
// Return the best solution we found.
isPositioned = bestIsPositioned;
numUnpositioned = bestNumUnpositioned;
rects = bestRects;
}
// Use rectangles to fill the given sub-area.
// Set the following for the best solution we find:
// xmin, xmax, etc. - Bounds of the rectangle we are trying to fill.
// num_unpositioned - The number of rectangles not yet positioned in this solution.
// Used to control the recursion.
// rects() - All rectangles for the problem, some positioned and others not.
// Initially this is the partial solution we are working from.
// At end, this is the best solution we could find.
// is_positioned() - Indicates which rectangles are positioned in this solution.
// max_y - The largest Y value for this solution.
private void FillBoundedArea(
int xmin, int xmax, int ymin, int ymax,
ref int numUnpositioned, ref Rectangle[] rects, ref bool[] isPositioned)
{
// See if every rectangle has been positioned.
if (numUnpositioned <= 0) return;
// Save a copy of the solution so far.
int bestNumUnpositioned = numUnpositioned;
Rectangle[] bestRects = (Rectangle[])rects.Clone();
bool[] bestIsPositioned = (bool[])isPositioned.Clone();
// Currently we have no solution for this area.
double bestDensity = 0;
// Some rectangles have not been positioned.
// Loop through the available rectangles.
for (int i = 0; i <= rects.Length - 1; i++)
{
// See if this rectangle is not position and will fit.
if ((!isPositioned[i]) &&
(rects[i].Width <= xmax - xmin) &&
(rects[i].Height <= ymax - ymin))
{
// It will fit. Try it.
// **************************************************
// Divide the remaining area horizontally.
int test1NumUnpositioned = numUnpositioned - 1;
Rectangle[] test1Rects = (Rectangle[])rects.Clone();
bool[] test1IsPositioned = (bool[])isPositioned.Clone();
test1Rects[i].X = xmin;
test1Rects[i].Y = ymin;
test1IsPositioned[i] = true;
// Fill the area on the right.
FillBoundedArea(xmin + rects[i].Width, xmax, ymin, ymin + rects[i].Height,
ref test1NumUnpositioned, ref test1Rects, ref test1IsPositioned);
// Fill the area on the bottom.
FillBoundedArea(xmin, xmax, ymin + rects[i].Height, ymax,
ref test1NumUnpositioned, ref test1Rects, ref test1IsPositioned);
// Learn about the test solution.
double test1Density =
SolutionDensity(
xmin + rects[i].Width, xmax, ymin, ymin + rects[i].Height,
xmin, xmax, ymin + rects[i].Height, ymax,
test1Rects, test1IsPositioned);
// See if this is better than the current best solution.
if (test1Density >= bestDensity)
{
// The test is better. Save it.
bestDensity = test1Density;
bestRects = test1Rects;
bestIsPositioned = test1IsPositioned;
bestNumUnpositioned = test1NumUnpositioned;
}
// **************************************************
// Divide the remaining area vertically.
int test2NumUnpositioned = numUnpositioned - 1;
Rectangle[] test2Rects = (Rectangle[])rects.Clone();
bool[] test2IsPositioned = (bool[])isPositioned.Clone();
test2Rects[i].X = xmin;
test2Rects[i].Y = ymin;
test2IsPositioned[i] = true;
// Fill the area on the right.
FillBoundedArea(xmin + rects[i].Width, xmax, ymin, ymax,
ref test2NumUnpositioned, ref test2Rects, ref test2IsPositioned);
// Fill the area on the bottom.
FillBoundedArea(xmin, xmin + rects[i].Width, ymin + rects[i].Height, ymax,
ref test2NumUnpositioned, ref test2Rects, ref test2IsPositioned);
// Learn about the test solution.
double test2Density =
SolutionDensity(
xmin + rects[i].Width, xmax, ymin, ymax,
xmin, xmin + rects[i].Width, ymin + rects[i].Height, ymax,
test2Rects, test2IsPositioned);
// See if this is better than the current best solution.
if (test2Density >= bestDensity)
{
// The test is better. Save it.
bestDensity = test2Density;
bestRects = test2Rects;
bestIsPositioned = test2IsPositioned;
bestNumUnpositioned = test2NumUnpositioned;
}
} // End trying this rectangle.
} // End looping through the rectangles.
// Return the best solution we found.
isPositioned = bestIsPositioned;
numUnpositioned = bestNumUnpositioned;
rects = bestRects;
}
// Find the largest Y coordinate in the solution.
private int MaxY(Rectangle[] rects, bool[] isPositioned)
{
int maxY = 0;
for (int i = 0; i <= rects.Length - 1; i++)
if (isPositioned[i] && (maxY < rects[i].Bottom)) maxY = rects[i].Bottom;
return maxY;
}
// Find the density of the rectangles in the given areas for this solution.
private double SolutionDensity(
int xmin1, int xmax1, int ymin1, int ymax1,
int xmin2, int xmax2, int ymin2, int ymax2,
Rectangle[] rects, bool[] isPositioned)
{
Rectangle rect1 = new Rectangle(xmin1, ymin1, xmax1 - xmin1, ymax1 - ymin1);
Rectangle rect2 = new Rectangle(xmin2, ymin2, xmax2 - xmin2, ymax2 - ymin2);
int areaCovered = 0;
for (int i = 0; i <= rects.Length - 1; i++)
{
if (isPositioned[i] &&
(rects[i].IntersectsWith(rect1) ||
rects[i].IntersectsWith(rect2)))
{
areaCovered += rects[i].Width * rects[i].Height;
}
}
double denom = rect1.Width * rect1.Height + rect2.Width * rect2.Height;
if (System.Math.Abs(denom) < 0.001) return 0;
return areaCovered / denom;
}
// Start the recursion.
public void AlgRecursiveDivision(int binWidth, Rectangle[] rects)
{
// Sort by height.
Rectangle[] bestSolution = (Rectangle[])rects.Clone();
System.Array.Sort(rects, new HeightComparer());
// Make variables to track and record the best solution.
bool[] isPositioned = new bool[rects.Length];
int numUnpositioned = rects.Length;
// Perform the recursion.
FillUnboundedArea(0, binWidth, 0, ref numUnpositioned, ref bestSolution, ref isPositioned);
// Save the best solution.
System.Array.Copy(bestSolution, rects, rects.Length);
}
}
}