-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathexample2.R
63 lines (51 loc) · 1.48 KB
/
example2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
##
## Example 2: Logistic regression
##
## Load rjags library
library(rjags)
## Data
k <- 10
x <- c(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
y <- c(1, 2, 2, 6, 4, 5, 8, 9, 9, 9, 10)
n <- length(x)
#pdf("example2.pdf", width = 240/72, height = 240/72,
# family = "Helvetica", pointsize = 10)
plot(x, y, las = 1)
#dev.off()
## Number of chains
n.chains <- 3
## Initial values
inits <- vector("list", n.chains)
inits[[1]] <- list(beta = -10, beta.x = 0,
.RNG.seed = 314,
.RNG.name = "base::Mersenne-Twister")
inits[[2]] <- list(beta = -5, beta.x = 2,
.RNG.seed = 3141,
.RNG.name = "base::Mersenne-Twister")
inits[[3]] <- list(beta = 0, beta.x = 4,
.RNG.seed = 31415,
.RNG.name = "base::Mersenne-Twister")
## Model file
model.file <- "example2_model.txt"
## Parameters
pars <- c("beta", "beta.x")
## Model
model <- jags.model(file = model.file,
data = list(N = n, K = k,
X = x, Y = y),
inits = inits, n.chains = n.chains,
n.adapt = 1000)
## Burn-in
update(model, n.iter = 1000)
## Sampling
post <- coda.samples(model, n.iter = 4000, thin = 4,
variable.names = pars)
## Plot results
#pdf("example2_results.pdf", width = 400/72, height = 400/72,
# family = "Helvetica", pointsize = 10)
plot(post)
#dev.off()
## Check convergence
gelman.diag(post)
## Print results
summary(post)