-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathexample3.R
146 lines (116 loc) · 3.87 KB
/
example3.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
##
## Example 3: Linear Mixed Model
##
library(rjags)
load.module("glm")
## Data
data <- read.csv("example3.csv")
## Show data
head(data, 10)
#pdf("example3_pairs.pdf", width = 360/72, height = 360/72)
pairs(data)
#dev.off()
## Convert data to matrices
n.block <- max(data$block) # number of blocks
n.data <- nrow(data) / n.block # number of observations per block
x1 <- t(matrix(data$x1, nrow = n.data, ncol = n.block))
x2 <- t(matrix(data$x2, nrow = n.data, ncol = n.block))
y <- t(matrix(data$y, nrow = n.data, ncol = n.block))
print(x1)
## Model file
model.file <- "example3_model.txt"
## Number of chains
n.chains <- 3
## Initial values
inits <- vector("list", n.chains)
inits[[1]] <- list(beta = 5, beta.1 = 0, beta.2 = 0,
sigma = 1, sigma.B = 1,
.RNG.seed = 123,
.RNG.name = "base::Mersenne-Twister")
inits[[2]] <- list(beta = -5, beta.1 = 10, beta.2 = 10,
sigma = 10, sigma.B = 10,
.RNG.seed = 1234,
.RNG.name = "base::Mersenne-Twister")
inits[[3]] <- list(beta = 0, beta.1 = -10, beta.2 = -10,
sigma = 5, sigma.B = 5,
.RNG.seed = 12345,
.RNG.name = "base::Mersenne-Twister")
## Parameters
pars <- c("beta", "beta.1", "beta.2",
"sigma", "sigma.B", "e.B")
## MCMC
model <- jags.model(file = model.file,
data = list(M = n.block, N = n.data,
X1 = x1, X2 = x2, Y = y),
inits = inits, n.chains = n.chains,
n.adapt = 1000)
## Burn-in
update(model, n.iter = 1000)
## Sampling
post <- coda.samples(model, n.iter = 5000, thin = 5,
variable.names = pars)
## Show results
gelman.diag(post)
summary(post)
## Plot densities of random effects
#pdf("example3_e.pdf", width = 360/72, height = 360/72,
# family = "Helvetica", pointsize = 10)
plot(NULL, type = "n",
xlim = c(-4, 4), ylim = c(0, 0.8),
xlab = "value", ylab = "density",
main = "Posterior distribution of e.B[]",
las = 1)
for (i in 1:n.block) {
j <- paste("e.B[", i, "]", sep = "")
lines(density(unlist(post[, j])), col = i)
}
#dev.off()
##
## Nested indexing
##
## Data
data <- read.csv("example3.csv")
n.block <- max(data$block) # Number of blocks
n.data <- nrow(data) # Number of observations
## Model
model.file <- "example3-1_model.txt"
# Number of chains
n.chains <- 3
## Initial values
inits <- vector("list", n.chains)
inits[[1]] <- list(beta = 5, beta.1 = 0, beta.2 = 0,
sigma = 1, sigma.B = 1,
.RNG.seed = 123,
.RNG.name = "base::Mersenne-Twister")
inits[[2]] <- list(beta = -5, beta.1 = 10, beta.2 = 10,
sigma = 10, sigma.B = 10,
.RNG.seed = 1234,
.RNG.name = "base::Mersenne-Twister")
inits[[3]] <- list(beta = 0, beta.1 = -10, beta.2 = -10,
sigma = 5, sigma.B = 5,
.RNG.seed = 12345,
.RNG.name = "base::Mersenne-Twister")
## Parameters
pars <- c("beta", "beta.1", "beta.2",
"sigma", "sigma.B", "e.B")
## MCMC
model <- jags.model(file = model.file,
data = list(M = n.block, N = n.data,
X1 = data$x1, X2 = data$x2,
Y = data$y, B = data$block),
inits = inits, n.chains = n.chains,
n.adapt = 1000)
## Burn-in
update(model, n.iter = 1000)
## Sampling
post <- coda.samples(model, n.iter = 5000, thin = 5,
variable.names = pars)
## Show results
gelman.diag(post)
summary(post)
## Visualization using ggmcmc
library(ggmcmc)
post.ggs <- ggs(post)
ggs_caterpillar(post.ggs, "e.B")
#ggsave("example3_caterpillar.pdf", width = 12, height = 12, units = "cm")
ggmcmc(post.ggs, "example3-output.pdf")