forked from harvardnlp/urnng
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·321 lines (307 loc) · 15.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#!/usr/bin/env python3
import argparse
import time
import torch
from torch import cuda
from data import Dataset
from models import RNNG
from utils import *
parser = argparse.ArgumentParser()
# Data path options
parser.add_argument('--train_file', default='data/ptb-1unk-train.pkl')
parser.add_argument('--val_file', default='data/ptb-1unk-val.pkl')
parser.add_argument('--train_from', default='')
# Model options
parser.add_argument('--w_dim', default=650, type=int, help='hidden dimension for LM/RNNG')
parser.add_argument('--h_dim', default=650, type=int, help='hidden dimension for LM/RNNG')
parser.add_argument('--q_dim', default=256, type=int, help='hidden dimension for variational RNN')
parser.add_argument('--num_layers', default=2, type=int, help='number of layers in LM and the stack LSTM (for RNNG)')
parser.add_argument('--dropout', default=0.5, type=float, help='dropout rate')
# Optimization options
parser.add_argument('--count_eos_ppl', default=0, type=int, help='whether to count eos in val PPL')
parser.add_argument('--save_path', default='urnng.pt', help='where to save the data')
parser.add_argument('--num_epochs', default=18, type=int, help='number of training epochs')
parser.add_argument('--min_epochs', default=8, type=int,
help='do not decay learning rate for at least this many epochs')
parser.add_argument('--mode', default='unsupervised', type=str, choices=['unsupervised', 'supervised'])
parser.add_argument('--mc_samples', default=5, type=int,
help='how many samples for IWAE bound calc for evaluation')
parser.add_argument('--samples', default=8, type=int,
help='how many samples for score function gradients')
parser.add_argument('--lr', default=1, type=float, help='starting learning rate')
parser.add_argument('--q_lr', default=0.0001, type=float, help='learning rate for inference network q')
parser.add_argument('--action_lr', default=0.1, type=float, help='learning rate for action layer')
parser.add_argument('--decay', default=0.5, type=float, help='')
parser.add_argument('--kl_warmup', default=2, type=int, help='')
parser.add_argument('--train_q_epochs', default=2, type=int, help='')
parser.add_argument('--param_init', default=0.1, type=float, help='parameter initialization (over uniform)')
parser.add_argument('--max_grad_norm', default=5, type=float, help='gradient clipping parameter')
parser.add_argument('--q_max_grad_norm', default=1, type=float, help='gradient clipping parameter for q')
parser.add_argument('--gpu', default=2, type=int, help='which gpu to use')
parser.add_argument('--seed', default=3435, type=int, help='random seed')
parser.add_argument('--print_every', type=int, default=500, help='print stats after this many batches')
def main(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_data = Dataset(args.train_file)
val_data = Dataset(args.val_file)
vocab_size = int(train_data.vocab_size)
print('Train: %d sents / %d batches, Val: %d sents / %d batches' %
(train_data.sents.size(0), len(train_data), val_data.sents.size(0),
len(val_data)))
print('Vocab size: %d' % vocab_size)
cuda.set_device(args.gpu)
if args.train_from == '':
model = RNNG(vocab=vocab_size,
w_dim=args.w_dim,
h_dim=args.h_dim,
dropout=args.dropout,
num_layers=args.num_layers,
q_dim=args.q_dim)
if args.param_init > 0:
for param in model.parameters():
param.data.uniform_(-args.param_init, args.param_init)
else:
print('loading model from ' + args.train_from)
checkpoint = torch.load(args.train_from)
model = checkpoint['model']
print("model architecture")
print(model)
q_params = []
action_params = []
model_params = []
for name, param in model.named_parameters():
if 'action' in name:
print(name)
action_params.append(param)
elif 'q_' in name:
print(name)
q_params.append(param)
else:
model_params.append(param)
q_lr = args.q_lr
optimizer = torch.optim.SGD(model_params, lr=args.lr)
q_optimizer = torch.optim.Adam(q_params, lr=q_lr)
action_optimizer = torch.optim.SGD(action_params, lr=args.action_lr)
model.train()
model.cuda()
epoch = 0
decay = 0
if args.kl_warmup > 0:
kl_pen = 0.
kl_warmup_batch = 1. / (args.kl_warmup * len(train_data))
else:
kl_pen = 1.
best_val_ppl = 5e5
best_val_f1 = 0
samples = args.samples
best_val_ppl, best_val_f1 = eval(val_data, model, samples=args.mc_samples,
count_eos_ppl=args.count_eos_ppl)
all_stats = [[0., 0., 0.]] # true pos, false pos, false neg for f1 calc
while epoch < args.num_epochs:
start_time = time.time()
epoch += 1
if epoch > args.train_q_epochs:
# stop training q after this many epochs
args.q_lr = 0.
for param_group in q_optimizer.param_groups:
param_group['lr'] = args.q_lr
print('Starting epoch %d' % epoch)
train_nll_recon = 0.
train_nll_iwae = 0.
train_kl = 0.
train_q_entropy = 0.
num_sents = 0.
num_words = 0.
b = 0
for i in np.random.permutation(len(train_data)):
if args.kl_warmup > 0:
kl_pen = min(1., kl_pen + kl_warmup_batch)
sents, length, batch_size, gold_actions, gold_spans, gold_binary_trees, other_data = train_data[i]
if length == 1:
# we ignore length 1 sents during training/eval since we work with binary trees only
continue
sents = sents.cuda()
b += 1
q_optimizer.zero_grad()
optimizer.zero_grad()
action_optimizer.zero_grad()
if args.mode == 'unsupervised':
ll_word, ll_action_p, ll_action_q, all_actions, q_entropy = model(sents, samples=samples,
has_eos=True)
log_f = ll_word + kl_pen * ll_action_p
iwae_ll = log_f.mean(1).detach() + kl_pen * q_entropy.detach()
obj = log_f.mean(1)
if epoch < args.train_q_epochs:
obj += kl_pen * q_entropy
baseline = torch.zeros_like(log_f)
baseline_k = torch.zeros_like(log_f)
for k in range(samples):
baseline_k.copy_(log_f)
baseline_k[:, k].fill_(0)
baseline[:, k] = baseline_k.detach().sum(1) / (samples - 1)
obj += ((log_f.detach() - baseline.detach()) * ll_action_q).mean(1)
kl = (ll_action_q - ll_action_p).mean(1).detach()
ll_word = ll_word.mean(1)
train_q_entropy += q_entropy.sum().item()
else:
gold_actions = gold_binary_trees
ll_action_q = model.forward_tree(sents, gold_actions, has_eos=True)
ll_word, ll_action_p, all_actions = model.forward_actions(sents, gold_actions)
obj = ll_word + ll_action_p + ll_action_q
kl = -ll_action_q
iwae_ll = ll_word + ll_action_p
train_nll_iwae += -iwae_ll.sum().item()
actions = all_actions[:, 0].long().cpu()
train_nll_recon += -ll_word.sum().item()
train_kl += kl.sum().item()
(-obj.mean()).backward()
if args.max_grad_norm > 0:
torch.nn.utils.clip_grad_norm_(model_params + action_params, args.max_grad_norm)
if args.q_max_grad_norm > 0:
torch.nn.utils.clip_grad_norm_(q_params, args.q_max_grad_norm)
q_optimizer.step()
optimizer.step()
action_optimizer.step()
num_sents += batch_size
num_words += batch_size * length
for bb in range(batch_size):
action = list(actions[bb].numpy())
span_b = get_spans(action)
span_b_set = set(span_b[:-1]) # ignore the sentence-level trivial span
update_stats(span_b_set, [set(gold_spans[bb][:-1])], all_stats)
if b % args.print_every == 0:
all_f1 = get_f1(all_stats)
param_norm = sum([p.norm() ** 2 for p in model.parameters()]).item() ** 0.5
log_str = 'Epoch: %d, Batch: %d/%d, LR: %.4f, qLR: %.5f, qEnt: %.4f, TrainVAEPPL: %.2f, ' + \
'TrainReconPPL: %.2f, TrainKL: %.2f, TrainIWAEPPL: %.2f, ' + \
'|Param|: %.2f, BestValPerf: %.2f, BestValF1: %.2f, KLPen: %.4f, ' + \
'GoldTreeF1: %.2f, Throughput: %.2f examples/sec'
print(log_str %
(epoch, b, len(train_data), args.lr, args.q_lr, train_q_entropy / num_sents,
np.exp((train_nll_recon + train_kl) / num_words),
np.exp(train_nll_recon / num_words), train_kl / num_sents,
np.exp(train_nll_iwae / num_words),
param_norm, best_val_ppl, best_val_f1, kl_pen,
all_f1[0], num_sents / (time.time() - start_time)))
sent_str = [train_data.idx2word[word_idx] for word_idx in list(sents[-1][1:-1].cpu().numpy())]
print("PRED:", get_tree(action[:-2], sent_str))
print("GOLD:", get_tree(gold_binary_trees[-1], sent_str))
print('--------------------------------')
print('Checking validation perf...')
val_ppl, val_f1 = eval(val_data, model,
samples=args.mc_samples, count_eos_ppl=args.count_eos_ppl)
print('--------------------------------')
if val_ppl < best_val_ppl:
best_val_ppl = val_ppl
best_val_f1 = val_f1
checkpoint = {
'args': args.__dict__,
'model': model.cpu(),
'word2idx': train_data.word2idx,
'idx2word': train_data.idx2word
}
print('Saving checkpoint to %s' % args.save_path)
torch.save(checkpoint, args.save_path)
model.cuda()
else:
if epoch > args.min_epochs:
decay = 1
if decay == 1:
args.lr = args.decay * args.lr
args.q_lr = args.decay * args.q_lr
args.action_lr = args.decay * args.action_lr
for param_group in optimizer.param_groups:
param_group['lr'] = args.lr
for param_group in q_optimizer.param_groups:
param_group['lr'] = args.q_lr
for param_group in action_optimizer.param_groups:
param_group['lr'] = args.action_lr
if args.lr < 0.03:
break
print("Finished training!")
def eval(data, model, samples=0, count_eos_ppl=0):
model.eval()
num_sents = 0
num_words = 0
total_nll_recon = 0.
total_kl = 0.
total_nll_iwae = 0.
corpus_f1 = [0., 0., 0.]
sent_f1 = []
with torch.no_grad():
for i in list(reversed(range(len(data)))):
sents, length, batch_size, gold_actions, gold_spans, gold_binary_trees, other_data = data[i]
if length == 1: # length 1 sents are ignored since URNNG needs at least length 2 sents
continue
if args.count_eos_ppl == 1:
tree_length = length
length += 1
else:
sents = sents[:, :-1]
tree_length = length
sents = sents.cuda()
ll_word_all, ll_action_p_all, ll_action_q_all, actions_all, q_entropy = model(sents,
samples=samples,
has_eos=count_eos_ppl == 1)
ll_word, ll_action_p, ll_action_q = ll_word_all.mean(1), ll_action_p_all.mean(1), ll_action_q_all.mean(1)
kl = ll_action_q - ll_action_p
_, binary_matrix, argmax_spans = model.q_crf._viterbi(model.scores)
actions = []
for b in range(batch_size):
tree = get_tree_from_binary_matrix(binary_matrix[b], tree_length)
actions.append(get_actions(tree))
actions = torch.Tensor(actions).long()
total_nll_recon += -ll_word.sum().item()
total_kl += kl.sum().item()
num_sents += batch_size
num_words += batch_size * length
if samples > 0:
# PPL estimate based on IWAE
sample_ll = torch.zeros(batch_size, samples)
for j in range(samples):
ll_word_j, ll_action_p_j, ll_action_q_j = ll_word_all[:, j], ll_action_p_all[:, j], ll_action_q_all[
:, j]
sample_ll[:, j].copy_(ll_word_j + ll_action_p_j - ll_action_q_j)
ll_iwae = model.logsumexp(sample_ll, 1) - np.log(samples)
total_nll_iwae -= ll_iwae.sum().item()
for b in range(batch_size):
action = list(actions[b].numpy())
span_b = get_spans(action)
span_b = argmax_spans[b]
span_b_set = set(span_b[:-1])
gold_b_set = set(gold_spans[b][:-1])
tp, fp, fn = get_stats(span_b_set, gold_b_set)
corpus_f1[0] += tp
corpus_f1[1] += fp
corpus_f1[2] += fn
# sent-level F1 is based on L83-89 from https://github.com/yikangshen/PRPN/test_phrase_grammar.py
model_out = span_b_set
std_out = gold_b_set
overlap = model_out.intersection(std_out)
prec = float(len(overlap)) / (len(model_out) + 1e-8)
reca = float(len(overlap)) / (len(std_out) + 1e-8)
if len(std_out) == 0:
reca = 1.
if len(model_out) == 0:
prec = 1.
f1 = 2 * prec * reca / (prec + reca + 1e-8)
sent_f1.append(f1)
tp, fp, fn = corpus_f1
prec = tp / (tp + fp)
recall = tp / (tp + fn)
corpus_f1 = 2 * prec * recall / (prec + recall) * 100 if prec + recall > 0 else 0.
sent_f1 = np.mean(np.array(sent_f1)) * 100
elbo_ppl = np.exp((total_nll_recon + total_kl) / num_words)
recon_ppl = np.exp(total_nll_recon / num_words)
iwae_ppl = np.exp(total_nll_iwae / num_words)
kl = total_kl / num_sents
print('ElboPPL: %.2f, ReconPPL: %.2f, KL: %.4f, IwaePPL: %.2f, CorpusF1: %.2f, SentAvgF1: %.2f' %
(elbo_ppl, recon_ppl, kl, iwae_ppl, corpus_f1, sent_f1))
# note that corpus F1 printed here is different from what you should get from
# evalb since we do not ignore any tags (e.g. punctuation), while evalb ignores it
model.train()
return iwae_ppl, corpus_f1
if __name__ == '__main__':
args = parser.parse_args()
main(args)