-
Notifications
You must be signed in to change notification settings - Fork 0
/
nn.py
448 lines (330 loc) · 14.9 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (5.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
###########################################
# CONSTANTS DEFINING THE MODEL
n_x = 9
layers_dims = [9, 25, 17, 11, 1] # 4-layer model
###########################################
def predict(X, y, parameters, print_predictions=False):
"""
Predict the results of a L-layer neural network.
Arguments:
X -- data set of examples you would like to label
parameters -- parameters of the trained model
Returns:
p -- predictions for the given dataset X
"""
m = X.shape[1]
n = len(parameters) // 2 # number of layers in the neural network
p = np.zeros((1, m))
# Forward propagation
probas, caches = L_model_forward(X, parameters)
# convert probas to 0/1 predictions
for i in range(0, probas.shape[1]):
if probas[0, i] >= 0.5:
p[0, i] = 1
else:
p[0, i] = 0
if print_predictions:
print(probas[0, i], "==", y[i], round(probas[0, i]) == y[i])
print("Accuracy: " + str(np.sum((p == y) / m) * 100), "%")
return p
def sigmoid(X):
return 1 / (1 + np.exp(-X)), X
def softmax(X):
return (np.exp(X) / np.sum(np.exp(X), axis=1, keepdims=True)), X
def relu(X):
return np.maximum(0.01 * X, X), X
def tanh(X):
return 2 * sigmoid(X * 2)[0] - 1, X
def tanh_backward(dA, Z):
return (1 - tanh(Z)[0] ** 2) * dA
def relu_backward(dA, Z):
dZ = np.array(dA, copy=True)
dZ[Z <= 0] = 0.01
assert (dZ.shape == Z.shape)
return dZ
def softmax_backward(da, z):
# z, da shapes - (m, n)
m, n = z.shape
p = _softmax(z)
tensor1 = np.einsum('ij,ik->ijk', p, p) # (m, n, n)
tensor2 = np.einsum('ij,jk->ijk', p, np.eye(n, n)) # (m, n, n)
dSoftmax = tensor2 - tensor1
dz = np.einsum('ijk,ik->ij', dSoftmax, da) # (m, n)
return dz
def sigmoid_backward(dA, Z):
s = 1 / (1 + np.exp(-Z))
dZ = dA * s * (1 - s)
assert (dZ.shape == Z.shape)
return dZ
def _softmax(X):
expo = np.exp(X)
expo_sum = np.sum(np.exp(X))
return expo / expo_sum
def initialize_parameters_deep(layer_dims):
"""
Arguments:
layer_dims -- python array (list) containing the dimensions of each layer in our network
Returns:
parameters -- python dictionary containing parameters "W1", "b1", ..., "WL", "bL":
Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
bl -- bias vector of shape (layer_dims[l], 1)
"""
np.random.seed(3)
parameters = {}
L = len(layer_dims) # number of layers in the network
for l in range(1, L):
parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) * 0.01
parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
assert (parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l - 1]))
assert (parameters['b' + str(l)].shape == (layer_dims[l], 1))
return parameters
def linear_forward(A, W, b):
"""
Linear part of a layer's forward propagation.
Arguments:
A -- activations from previous layer (or input data): (size of previous layer, number of examples)
W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
b -- bias vector, numpy array of shape (size of the current layer, 1)
Returns:
Z -- the input of the activation function, also called pre-activation parameter
cache -- a python tuple containing "A", "W" and "b" ; stored for computing the backward pass efficiently
"""
Z = np.dot(W, A) + b
assert (Z.shape == (W.shape[0], A.shape[1]))
cache = (A, W, b)
return Z, cache
def linear_activation_forward(A_prev, W, b, activation):
"""
Forward propagation for the LINEAR->ACTIVATION layer
Arguments:
A_prev -- activations from previous layer (or input data): (size of previous layer, number of examples)
W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
b -- bias vector, numpy array of shape (size of the current layer, 1)
activation -- the activation to be used in this layer, stored as a text string
Returns:
A -- the output of the activation function, also called the post-activation value
cache -- a python tuple containing "linear_cache" and "activation_cache";
stored for computing the backward pass efficiently
"""
if activation == "sigmoid":
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = sigmoid(Z)
elif activation == "relu":
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = relu(Z)
elif activation == "tanh":
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = tanh(Z)
elif activation == "softmax":
Z, linear_cache = linear_forward(A_prev, W, b)
A, activation_cache = softmax(Z)
assert (A.shape == (W.shape[0], A_prev.shape[1]))
cache = (linear_cache, activation_cache)
return A, cache
def L_model_forward(X, parameters):
"""
Forward propagation for the [LINEAR->TANH]*(L-1)->LINEAR->SIGMOID computation
Arguments:
X -- data, numpy array of shape (input size, number of examples)
parameters -- output of initialize_parameters_deep()
Returns:
AL -- last post-activation value
caches -- list of caches containing:
every cache of linear_activation_forward() (there are L-1 of them, indexed from 0 to L-1)
"""
caches = []
A = X
L = len(parameters) // 2 # number of layers in the neural network
# [LINEAR -> TanH]*(L-1)
for l in range(1, L):
A_prev = A
A, cache = linear_activation_forward(A_prev, parameters["W" + str(l)], parameters["b" + str(l)], 'tanh')
caches.append(cache)
# LINEAR -> SIGMOID
AL, cache = linear_activation_forward(A, parameters["W" + str(L)], parameters["b" + str(L)], 'sigmoid')
caches.append(cache)
# AL.shape = [AL.shape[1], 2]
return AL, caches
def compute_cost(AL, Y):
"""
Cost function defined by equation (7).
Arguments:
AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)
Returns:
cost -- cross-entropy cost
"""
m = Y.shape[0]
# Computes loss from aL and y.
cost = -(1 / m) * np.sum(Y * np.log(AL) + (1 - Y) * np.log(1 - AL)) # moze i np.multiply(...)
# cost = - np.sum(Y * np.log(AL))
# cost = np.sum(Y - AL) / m
cost = np.squeeze(cost) # Boze pomozi... zasto ovo postoji :(
assert (cost.shape == ())
return cost
def linear_backward(dZ, cache):
"""
Linear portion of backward propagation for a single layer (layer l)
Arguments:
dZ -- Gradient of the cost with respect to the linear output (of current layer l)
cache -- tuple of values (A_prev, W, b) coming from the forward propagation in the current layer
Returns:
dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
dW -- Gradient of the cost with respect to W (current layer l), same shape as W
db -- Gradient of the cost with respect to b (current layer l), same shape as b
"""
A_prev, W, b = cache
m = A_prev.shape[1]
dW = (1 / m) * np.dot(dZ, A_prev.T)
db = (1 / m) * np.sum(dZ, axis=1, keepdims=True)
dA_prev = np.dot(W.T, dZ)
assert (dA_prev.shape == A_prev.shape)
assert (dW.shape == W.shape)
assert (db.shape == b.shape)
return dA_prev, dW, db
def linear_activation_backward(dA, cache, activation):
"""
Backward propagation for the LINEAR->ACTIVATION layer.
Arguments:
dA -- post-activation gradient for current layer l
cache -- tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently
activation -- the activation to be used in this layer, stored as a text string
Returns:
dA_prev -- Gradient of the cost with respect to the activation (of the previous layer l-1), same shape as A_prev
dW -- Gradient of the cost with respect to W (current layer l), same shape as W
db -- Gradient of the cost with respect to b (current layer l), same shape as b
"""
linear_cache, activation_cache = cache
if activation == "relu":
dZ = relu_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
elif activation == "sigmoid":
dZ = sigmoid_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
elif activation == "tanh":
dZ = tanh_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
elif activation == "softmax":
dZ = softmax_backward(dA, activation_cache)
dA_prev, dW, db = linear_backward(dZ, linear_cache)
return dA_prev, dW, db
def L_model_backward(AL, Y, caches):
"""
Backward propagation for the [LINEAR->TANH] * (L-1) -> LINEAR -> SIGMOID group
Arguments:
AL -- probability vector, output of the forward propagation (L_model_forward())
Y -- true "label" vector (containing 0 if non-cat, 1 if cat)
caches -- list of caches
Returns:
grads -- A dictionary with the gradients
grads["dA" + str(l)] = ...
grads["dW" + str(l)] = ...
grads["db" + str(l)] = ...
"""
grads = {}
L = len(caches) # the number of layers
m = AL.shape[1]
Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
# Initializing the backpropagation
dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL))
# Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "dAL, current_cache". Outputs: "grads["dAL-1"], grads["dWL"], grads["dbL"]
current_cache = caches[L - 1]
grads["dA" + str(L - 1)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL,
current_cache,
activation='sigmoid')
# Loop from l=L-2 to l=0
for l in reversed(range(L - 1)):
# l-th layer: (TanH -> LINEAR) gradients.
# Inputs: "grads["dA" + str(l + 1)], current_cache". Outputs: "grads["dA" + str(l)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)]
current_cache = caches[l]
dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 1)], current_cache,
activation='tanh')
grads["dA" + str(l)] = dA_prev_temp
grads["dW" + str(l + 1)] = dW_temp
grads["db" + str(l + 1)] = db_temp
return grads
def update_parameters(parameters, grads, learning_rate, change):
"""
Update parameters using gradient descent
Arguments:
parameters -- python dictionary containing your parameters
grads -- python dictionary containing your gradients, output of L_model_backward
Returns:
parameters -- python dictionary containing your updated parameters
parameters["W" + str(l)] = ...
parameters["b" + str(l)] = ...
"""
L = len(parameters) // 2 # number of layers in the neural network
for l in range(L):
new_change_W = learning_rate * grads["dW" + str(l + 1)] + 0.9 * change["W" + str(l + 1)]
new_change_b = learning_rate * grads["db" + str(l + 1)] + 0.9 * change["b" + str(l + 1)]
parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - new_change_W
parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - new_change_b
change["W" + str(l + 1)] = new_change_W
change["b" + str(l + 1)] = new_change_b
# parameters["W" + str(l + 1)] = parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]
# parameters["b" + str(l + 1)] = parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]
return parameters
def L_layer_model(X, Y, layers_dims, dev_x, dev_y, learning_rate=0.01, num_iterations=10000, print_cost=False,
dynamic_grad_change=False, point_of_change=None, second_value=None, low_limit=1e-10):
"""
Implements a L-layer neural network: [LINEAR->TANH]*(L-1)->LINEAR->SIGMOID.
Arguments:
X -- data, numpy array of shape (num_px * num_px * 3, number of examples)
Y -- true "label" vector (containing 0 if cat, 1 if non-cat), of shape (1, number of examples)
layers_dims -- list containing the input size and each layer size, of length (number of layers + 1).
learning_rate -- learning rate of the gradient descent update rule
num_iterations -- number of iterations of the optimization loop
print_cost -- if True, it prints the cost every 100 steps
dynamic_grad_change -- if True, gradient is dynamically shrunken as time progresses
point_of_change -- defines tipping point where second_value lr becomes active
second_value -- second lr val that becomes active when point_of_change is passed
Returns:
parameters -- computed weights
"""
np.random.seed(1)
costs = [] # keep track of cost
validation = []
# Parameters initialization. (≈ 1 line of code)
parameters = initialize_parameters_deep(layers_dims)
# Loop (gradient descent)
change = {}
for i in range(len(layers_dims)):
change["W" + str(i + 1)] = 0.0
change["b" + str(i + 1)] = 0.0
for i in range(0, num_iterations):
# Forward propagation: [LINEAR -> TANH]*(L-1) -> LINEAR -> SIGMOID.
AL, caches = L_model_forward(X, parameters)
# Compute cost.
cost = compute_cost(AL, Y)
if dynamic_grad_change:
if i % 3000 == 0 and i > 0 and learning_rate > low_limit:
learning_rate /= (i / 1000)
elif point_of_change is not None and second_value is not None:
if cost < point_of_change:
learning_rate = second_value
# Backward propagation.
grads = L_model_backward(AL, Y, caches)
# Update parameters.
parameters = update_parameters(parameters, grads, learning_rate, change)
# Print the cost every 100 training example
if print_cost and i % 100 == 0:
print("Cost after iteration %i: %f" % (i, cost))
if print_cost and i % 100 == 0:
costs.append(cost)
if print_cost and i % 100 == 0:
validation.append(compute_cost(L_model_forward(dev_x, parameters)[0], dev_y))
# plot the cost
if print_cost:
plt.plot(np.squeeze(costs))
plt.plot(np.squeeze(validation))
plt.ylabel('cost')
plt.xlabel('iterations (per hundreds)')
plt.title("Learning rate =" + str(learning_rate))
plt.show()
return parameters