Skip to content

Commit

Permalink
fixed some typos in the comments
Browse files Browse the repository at this point in the history
  • Loading branch information
jacobwilliams committed Jun 10, 2022
1 parent 6ed1472 commit a83a344
Showing 1 changed file with 10 additions and 10 deletions.
20 changes: 10 additions & 10 deletions src/quadpack_generic.F90
Original file line number Diff line number Diff line change
Expand Up @@ -98,12 +98,12 @@ subroutine dqag(f, a, b, Epsabs, Epsrel, Key, Result, Abserr, Neval, Ier, &

implicit none

procedure(func) :: f !! function subprogam defining the integrand function `f(x)`.
procedure(func) :: f !! function subprogram defining the integrand function `f(x)`.
real(wp), intent(in) :: a !! lower limit of integration
real(wp), intent(out) :: Abserr !! estimate of the modulus of the absolute error,
!! which should equal or exceed `abs(i-result)`
real(wp), intent(in) :: b !! upper limit of integration
real(wp), intent(in) :: Epsabs !! absolute accoracy requested
real(wp), intent(in) :: Epsabs !! absolute accuracy requested
real(wp), intent(in) :: Epsrel !! relative accuracy requested
!! if epsabs<=0
!! and epsrel<max(50*rel.mach.acc.,0.5e-28),
Expand Down Expand Up @@ -152,7 +152,7 @@ subroutine dqag(f, a, b, Epsabs, Epsrel, Key, Result, Abserr, Neval, Ier, &
!! adjustments into account). however, if
!! this yield no improvement it is advised
!! to analyze the integrand in order to
!! determine the integration difficulaties.
!! determine the integration difficulties.
!! if the position of a local difficulty can
!! be determined (i.e.singularity,
!! discontinuity within the interval) one
Expand Down Expand Up @@ -187,7 +187,7 @@ subroutine dqag(f, a, b, Epsabs, Epsrel, Key, Result, Abserr, Neval, Ier, &
!! * 25 - 51 points if key = 5,
!! * 30 - 61 points if key>5.
integer, intent(out) :: Last !! on return, `last` equals the number of subintervals
!! produced in the subdiviosion process, which
!! produced in the subdivision process, which
!! determines the number of significant elements
!! actually in the work arrays.
integer, intent(out) :: Neval !! number of integrand evaluations
Expand Down Expand Up @@ -238,7 +238,7 @@ subroutine dqage(f, a, b, Epsabs, Epsrel, Key, Limit, Result, Abserr, &

procedure(func) :: f !! function subprogram defining the integrand function `f(x)`.
real(wp), intent(in) :: a !! lower limit of integration
real(wp), intent(in) :: b !! uppwer limit of integration
real(wp), intent(in) :: b !! upper limit of integration
real(wp), intent(in) :: Epsabs !! absolute accuracy requested
real(wp), intent(in) :: Epsrel !! relative accuracy requested
!! if `epsabs<=0`
Expand Down Expand Up @@ -2657,7 +2657,7 @@ subroutine dqawf(f, a, Omega, Integr, Epsabs, Result, Abserr, Neval, Ier, &
!! interval at this point and calling
!! appropriate integrators on the subranges.
!! * ier = 4 the extrapolation table constructed for
!! convergence accelaration of the series
!! convergence acceleration of the series
!! formed by the integral contributions over
!! the cycles, does not converge to within
!! the requested accuracy.
Expand Down Expand Up @@ -2740,7 +2740,7 @@ subroutine dqawf(f, a, Omega, Integr, Epsabs, Result, Abserr, Neval, Ier, &
!! * `work(1), ..., work(lst)` contain the integral
!! approximations over the cycles,
!! * `work(limlst+1), ..., work(limlst+lst)` contain
!! the error extimates over the cycles.
!! the error estimates over the cycles.
!!
!! further elements of work have no specific
!! meaning for the user.
Expand Down Expand Up @@ -2784,7 +2784,7 @@ end subroutine dqawf
! same as [[dqawf]] but provides more information and control
!
! the routine calculates an approximation result to a
! given fourier integal
! given fourier integral
! i = integral of `f(x)*w(x)` over `(a,infinity)`
! where `w(x)=cos(omega*x)` or `w(x)=sin(omega*x)`,
! hopefully satisfying following claim for accuracy
Expand Down Expand Up @@ -5877,7 +5877,7 @@ subroutine dqk41(f, a, b, Result, Abserr, Resabs, Resasc)
real(wp), intent(out) :: Abserr !! estimate of the modulus of the absolute error,
!! which should not exceed `abs(i-result)`
real(wp), intent(out) :: Resabs !! approximation to the integral j
real(wp), intent(out) :: Resasc !! approximation to the integal of abs(f-i/(b-a))
real(wp), intent(out) :: Resasc !! approximation to the integral of abs(f-i/(b-a))
!! over `(a,b)`

real(wp) :: dhlgth, fc, fsum, fv1(20), fv2(20)
Expand Down Expand Up @@ -6237,7 +6237,7 @@ subroutine dqk61(f, a, b, Result, Abserr, Resabs, Resasc)
9.63687371746442596394686263518098650964e-2_wp, &
9.95934205867952670627802821035694765299e-2_wp, &
1.01762389748405504596428952168554044633e-1_wp, &
1.02852652893558840341285636705415043868e-1_wp] !! weigths of the 30-point gauss rule
1.02852652893558840341285636705415043868e-1_wp] !! weights of the 30-point gauss rule

real(wp), dimension(31), parameter :: xgk = [ &
9.99484410050490637571325895705810819469e-1_wp, &
Expand Down

0 comments on commit a83a344

Please sign in to comment.