From a83a344d2fda66eb7297bf8ebbafce9e4790c85f Mon Sep 17 00:00:00 2001 From: Jacob Williams Date: Fri, 10 Jun 2022 15:16:02 -0500 Subject: [PATCH] fixed some typos in the comments --- src/quadpack_generic.F90 | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/src/quadpack_generic.F90 b/src/quadpack_generic.F90 index 66344ed..131126e 100644 --- a/src/quadpack_generic.F90 +++ b/src/quadpack_generic.F90 @@ -98,12 +98,12 @@ subroutine dqag(f, a, b, Epsabs, Epsrel, Key, Result, Abserr, Neval, Ier, & implicit none - procedure(func) :: f !! function subprogam defining the integrand function `f(x)`. + procedure(func) :: f !! function subprogram defining the integrand function `f(x)`. real(wp), intent(in) :: a !! lower limit of integration real(wp), intent(out) :: Abserr !! estimate of the modulus of the absolute error, !! which should equal or exceed `abs(i-result)` real(wp), intent(in) :: b !! upper limit of integration - real(wp), intent(in) :: Epsabs !! absolute accoracy requested + real(wp), intent(in) :: Epsabs !! absolute accuracy requested real(wp), intent(in) :: Epsrel !! relative accuracy requested !! if epsabs<=0 !! and epsrel5. integer, intent(out) :: Last !! on return, `last` equals the number of subintervals - !! produced in the subdiviosion process, which + !! produced in the subdivision process, which !! determines the number of significant elements !! actually in the work arrays. integer, intent(out) :: Neval !! number of integrand evaluations @@ -238,7 +238,7 @@ subroutine dqage(f, a, b, Epsabs, Epsrel, Key, Limit, Result, Abserr, & procedure(func) :: f !! function subprogram defining the integrand function `f(x)`. real(wp), intent(in) :: a !! lower limit of integration - real(wp), intent(in) :: b !! uppwer limit of integration + real(wp), intent(in) :: b !! upper limit of integration real(wp), intent(in) :: Epsabs !! absolute accuracy requested real(wp), intent(in) :: Epsrel !! relative accuracy requested !! if `epsabs<=0` @@ -2657,7 +2657,7 @@ subroutine dqawf(f, a, Omega, Integr, Epsabs, Result, Abserr, Neval, Ier, & !! interval at this point and calling !! appropriate integrators on the subranges. !! * ier = 4 the extrapolation table constructed for - !! convergence accelaration of the series + !! convergence acceleration of the series !! formed by the integral contributions over !! the cycles, does not converge to within !! the requested accuracy. @@ -2740,7 +2740,7 @@ subroutine dqawf(f, a, Omega, Integr, Epsabs, Result, Abserr, Neval, Ier, & !! * `work(1), ..., work(lst)` contain the integral !! approximations over the cycles, !! * `work(limlst+1), ..., work(limlst+lst)` contain - !! the error extimates over the cycles. + !! the error estimates over the cycles. !! !! further elements of work have no specific !! meaning for the user. @@ -2784,7 +2784,7 @@ end subroutine dqawf ! same as [[dqawf]] but provides more information and control ! ! the routine calculates an approximation result to a -! given fourier integal +! given fourier integral ! i = integral of `f(x)*w(x)` over `(a,infinity)` ! where `w(x)=cos(omega*x)` or `w(x)=sin(omega*x)`, ! hopefully satisfying following claim for accuracy @@ -5877,7 +5877,7 @@ subroutine dqk41(f, a, b, Result, Abserr, Resabs, Resasc) real(wp), intent(out) :: Abserr !! estimate of the modulus of the absolute error, !! which should not exceed `abs(i-result)` real(wp), intent(out) :: Resabs !! approximation to the integral j - real(wp), intent(out) :: Resasc !! approximation to the integal of abs(f-i/(b-a)) + real(wp), intent(out) :: Resasc !! approximation to the integral of abs(f-i/(b-a)) !! over `(a,b)` real(wp) :: dhlgth, fc, fsum, fv1(20), fv2(20) @@ -6237,7 +6237,7 @@ subroutine dqk61(f, a, b, Result, Abserr, Resabs, Resasc) 9.63687371746442596394686263518098650964e-2_wp, & 9.95934205867952670627802821035694765299e-2_wp, & 1.01762389748405504596428952168554044633e-1_wp, & - 1.02852652893558840341285636705415043868e-1_wp] !! weigths of the 30-point gauss rule + 1.02852652893558840341285636705415043868e-1_wp] !! weights of the 30-point gauss rule real(wp), dimension(31), parameter :: xgk = [ & 9.99484410050490637571325895705810819469e-1_wp, &