def make_dataset(image_list, mask_list, img_size=(360,480)):
images = []
masks = []
for img, mask in zip(image_list, mask_list):
images.append(cv2.resize(cv2.imread(img), img_size))
masks.append(binarylab(cv2.resize(cv2.imread(mask), img_size)))
images = np.array(images)
masks = np.array(masks)
return images, masks
class_weighting= [0.2595, 0.1826, 4.5640, 0.1417, 0.9051, 0.3826, 9.6446, 1.8418, 0.6823, 6.2478, 7.3614, 1.0974]
model_checkpoint = ModelCheckpoint('model-epoch-{epoch:02d}-val_loss-{val_loss:.2f}.hdf5', monitor='val_loss', save_best_only=True)
model_earlystopping = EarlyStopping(monitor='val_loss')
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_2 (InputLayer) (None, 360, 480, 3) 0
_________________________________________________________________
conv2d_21 (Conv2D) (None, 360, 480, 64) 1792
_________________________________________________________________
batch_normalization_21 (Batc (None, 360, 480, 64) 256
_________________________________________________________________
activation_21 (Activation) (None, 360, 480, 64) 0
_________________________________________________________________
conv2d_22 (Conv2D) (None, 360, 480, 64) 36928
_________________________________________________________________
batch_normalization_22 (Batc (None, 360, 480, 64) 256
_________________________________________________________________
activation_22 (Activation) (None, 360, 480, 64) 0
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 180, 240, 64) 0
_________________________________________________________________
conv2d_23 (Conv2D) (None, 180, 240, 128) 73856
_________________________________________________________________
batch_normalization_23 (Batc (None, 180, 240, 128) 512
_________________________________________________________________
activation_23 (Activation) (None, 180, 240, 128) 0
_________________________________________________________________
conv2d_24 (Conv2D) (None, 180, 240, 128) 147584
_________________________________________________________________
batch_normalization_24 (Batc (None, 180, 240, 128) 512
_________________________________________________________________
activation_24 (Activation) (None, 180, 240, 128) 0
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None, 90, 120, 128) 0
_________________________________________________________________
conv2d_25 (Conv2D) (None, 90, 120, 256) 295168
_________________________________________________________________
batch_normalization_25 (Batc (None, 90, 120, 256) 1024
_________________________________________________________________
activation_25 (Activation) (None, 90, 120, 256) 0
_________________________________________________________________
conv2d_26 (Conv2D) (None, 90, 120, 256) 590080
_________________________________________________________________
batch_normalization_26 (Batc (None, 90, 120, 256) 1024
_________________________________________________________________
activation_26 (Activation) (None, 90, 120, 256) 0
_________________________________________________________________
conv2d_27 (Conv2D) (None, 90, 120, 256) 590080
_________________________________________________________________
batch_normalization_27 (Batc (None, 90, 120, 256) 1024
_________________________________________________________________
activation_27 (Activation) (None, 90, 120, 256) 0
_________________________________________________________________
max_pooling2d_6 (MaxPooling2 (None, 45, 60, 256) 0
_________________________________________________________________
conv2d_28 (Conv2D) (None, 45, 60, 512) 1180160
_________________________________________________________________
batch_normalization_28 (Batc (None, 45, 60, 512) 2048
_________________________________________________________________
activation_28 (Activation) (None, 45, 60, 512) 0
_________________________________________________________________
conv2d_29 (Conv2D) (None, 45, 60, 512) 2359808
_________________________________________________________________
batch_normalization_29 (Batc (None, 45, 60, 512) 2048
_________________________________________________________________
activation_29 (Activation) (None, 45, 60, 512) 0
_________________________________________________________________
conv2d_30 (Conv2D) (None, 45, 60, 512) 2359808
_________________________________________________________________
batch_normalization_30 (Batc (None, 45, 60, 512) 2048
_________________________________________________________________
activation_30 (Activation) (None, 45, 60, 512) 0
_________________________________________________________________
conv2d_31 (Conv2D) (None, 45, 60, 512) 2359808
_________________________________________________________________
batch_normalization_31 (Batc (None, 45, 60, 512) 2048
_________________________________________________________________
activation_31 (Activation) (None, 45, 60, 512) 0
_________________________________________________________________
conv2d_32 (Conv2D) (None, 45, 60, 512) 2359808
_________________________________________________________________
batch_normalization_32 (Batc (None, 45, 60, 512) 2048
_________________________________________________________________
activation_32 (Activation) (None, 45, 60, 512) 0
_________________________________________________________________
conv2d_33 (Conv2D) (None, 45, 60, 512) 2359808
_________________________________________________________________
batch_normalization_33 (Batc (None, 45, 60, 512) 2048
_________________________________________________________________
activation_33 (Activation) (None, 45, 60, 512) 0
_________________________________________________________________
up_sampling2d_4 (UpSampling2 (None, 90, 120, 512) 0
_________________________________________________________________
conv2d_34 (Conv2D) (None, 90, 120, 256) 1179904
_________________________________________________________________
batch_normalization_34 (Batc (None, 90, 120, 256) 1024
_________________________________________________________________
activation_34 (Activation) (None, 90, 120, 256) 0
_________________________________________________________________
conv2d_35 (Conv2D) (None, 90, 120, 256) 590080
_________________________________________________________________
batch_normalization_35 (Batc (None, 90, 120, 256) 1024
_________________________________________________________________
activation_35 (Activation) (None, 90, 120, 256) 0
_________________________________________________________________
conv2d_36 (Conv2D) (None, 90, 120, 256) 590080
_________________________________________________________________
batch_normalization_36 (Batc (None, 90, 120, 256) 1024
_________________________________________________________________
activation_36 (Activation) (None, 90, 120, 256) 0
_________________________________________________________________
up_sampling2d_5 (UpSampling2 (None, 180, 240, 256) 0
_________________________________________________________________
conv2d_37 (Conv2D) (None, 180, 240, 128) 295040
_________________________________________________________________
batch_normalization_37 (Batc (None, 180, 240, 128) 512
_________________________________________________________________
activation_37 (Activation) (None, 180, 240, 128) 0
_________________________________________________________________
conv2d_38 (Conv2D) (None, 180, 240, 128) 147584
_________________________________________________________________
batch_normalization_38 (Batc (None, 180, 240, 128) 512
_________________________________________________________________
activation_38 (Activation) (None, 180, 240, 128) 0
_________________________________________________________________
up_sampling2d_6 (UpSampling2 (None, 360, 480, 128) 0
_________________________________________________________________
conv2d_39 (Conv2D) (None, 360, 480, 64) 73792
_________________________________________________________________
batch_normalization_39 (Batc (None, 360, 480, 64) 256
_________________________________________________________________
activation_39 (Activation) (None, 360, 480, 64) 0
_________________________________________________________________
conv2d_40 (Conv2D) (None, 360, 480, 64) 36928
_________________________________________________________________
batch_normalization_40 (Batc (None, 360, 480, 64) 256
_________________________________________________________________
activation_40 (Activation) (None, 360, 480, 64) 0
_________________________________________________________________
output (Conv2D) (None, 360, 480, 12) 780
=================================================================
Total params: 17,650,380
Trainable params: 17,639,628
Non-trainable params: 10,752
_________________________________________________________________