-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdeepzoom_tiler_camelyon16.py
353 lines (311 loc) · 14.4 KB
/
deepzoom_tiler_camelyon16.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# MIT License
#
# Copyright (c) 2020 Bin Li
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import argparse
import glob
import math
import os
import re
import shutil
import sys
import xml.etree.ElementTree as ET
from multiprocessing import Process, JoinableQueue
from unicodedata import normalize
import numpy as np
from PIL import Image, ImageFilter, ImageStat
from shapely.geometry import Polygon
Image.MAX_IMAGE_PIXELS = None
import openslide
from openslide import open_slide, ImageSlide
from openslide.deepzoom import DeepZoomGenerator
VIEWER_SLIDE_NAME = 'slide'
class TileWorker(Process):
"""A child process that generates and writes tiles."""
def __init__(self, queue, slidepath, tile_size, overlap, limit_bounds,
quality, threshold):
Process.__init__(self, name='TileWorker')
self.daemon = True
self._queue = queue
self._slidepath = slidepath
self._tile_size = tile_size
self._overlap = overlap
self._limit_bounds = limit_bounds
self._quality = quality
self._threshold = threshold
self._slide = None
def run(self):
self._slide = open_slide(self._slidepath)
last_associated = None
dz = self._get_dz()
u = 0
while True:
data = self._queue.get()
if data is None:
self._queue.task_done()
break
associated, level, address, outfile = data
if last_associated != associated:
dz = self._get_dz(associated)
last_associated = associated
tile = dz.get_tile(level, address)
edge = tile.filter(ImageFilter.FIND_EDGES)
edge = ImageStat.Stat(edge).sum
edge = np.mean(edge) / (self._tile_size ** 2)
w, h = tile.size
if edge > self._threshold:
(x, y), mlevel = dz.get_tile_coordinates(level, address)[0:2]
factor = 2 ** mlevel
annotation_file = 'datasets/camelyon16/annotations/' + c_slide.split('/')[-1].split('.')[0] + '.xml'
label = 0
if os.path.isfile(annotation_file):
label = self.does_square_have_cancer(annotation_file, x, y, self._tile_size * factor)
tile_label_csv = open("datasets/camelyon16/tile_label.csv", "a")
tile_label_csv.write(f'{c_slide}/{outfile},{label}\n')
if not (w == self._tile_size and h == self._tile_size):
tile = tile.resize((self._tile_size, self._tile_size))
tile.save(outfile, quality=self._quality)
self._queue.task_done()
def _get_dz(self, associated=None):
if associated is not None:
image = ImageSlide(self._slide.associated_images[associated])
else:
image = self._slide
return DeepZoomGenerator(image, self._tile_size, self._overlap,
limit_bounds=self._limit_bounds)
# https://thedeeplearning-intern322.medium.com/extracting-patches-from-whole-slide-images-wsi-c3bb9b00d9b5
def parse_xml(self, anno_path):
tree = ET.ElementTree(file=anno_path)
annolist = {}
root = tree.getroot()
i = 0
for coords in root.iter('Coordinates'):
vasc = []
for coord in coords:
vasc.append((int(float(coord.attrib.get("X"))), int(float(coord.attrib.get("Y")))))
annolist[i] = vasc
i += 1
return annolist
def does_square_have_cancer(self, annotation_file, x, y, size):
coordinates = self.parse_xml(annotation_file)
for i in coordinates:
polyg1 = Polygon(coordinates[i])
polyg2 = Polygon([(x, y), (x + size, y), (x + size, y + size), (x, y + size)])
if polyg1.intersects(polyg2):
return 1
return 0
class DeepZoomImageTiler(object):
"""Handles generation of tiles and metadata for a single image."""
def __init__(self, dz, basename, target_levels, mag_base, format, associated, queue):
self._dz = dz
self._basename = basename
self._format = format
self._associated = associated
self._queue = queue
self._processed = 0
self._target_levels = target_levels
self._mag_base = int(mag_base)
def run(self):
self._write_tiles()
def _write_tiles(self):
target_levels = [self._dz.level_count - i - 1 for i in self._target_levels]
mag_list = [int(self._mag_base / 2 ** i) for i in self._target_levels]
mag_idx = 0
for level in range(self._dz.level_count):
if not (level in target_levels):
continue
tiledir = os.path.join("%s_files" % self._basename, str(mag_list[mag_idx]))
if not os.path.exists(tiledir):
os.makedirs(tiledir)
cols, rows = self._dz.level_tiles[level]
for row in range(rows):
for col in range(cols):
tilename = os.path.join(tiledir, '%d_%d-%d.%s' % (
col, row, level, self._format)) # added level
if not os.path.exists(tilename):
self._queue.put((self._associated, level, (col, row),
tilename))
self._tile_done()
mag_idx += 1
def _tile_done(self):
self._processed += 1
count, total = self._processed, self._dz.tile_count
if count % 100 == 0 or count == total:
print("Tiling %s: wrote %d/%d tiles" % (
self._associated or 'slide', count, total),
end='\r', file=sys.stderr)
if count == total:
print(file=sys.stderr)
class DeepZoomStaticTiler(object):
"""Handles generation of tiles and metadata for all images in a slide."""
def __init__(self, slidepath, basename, mag_levels, base_mag, objective, format, tile_size, overlap,
limit_bounds, quality, workers, threshold):
self._slide = open_slide(slidepath)
self._basename = basename
self._format = format
self._tile_size = tile_size
self._overlap = overlap
self._mag_levels = mag_levels
self._base_mag = base_mag
self._objective = objective
self._limit_bounds = limit_bounds
self._queue = JoinableQueue(2 * workers)
self._workers = workers
self._dzi_data = {}
for _i in range(workers):
TileWorker(self._queue, slidepath, tile_size, overlap,
limit_bounds, quality, threshold).start()
def run(self):
self._run_image()
self._shutdown()
def _run_image(self, associated=None):
"""Run a single image from self._slide."""
if associated is None:
image = self._slide
basename = self._basename
else:
image = ImageSlide(self._slide.associated_images[associated])
basename = os.path.join(self._basename, self._slugify(associated))
dz = DeepZoomGenerator(image, self._tile_size, self._overlap,
limit_bounds=self._limit_bounds)
MAG_BASE = self._slide.properties.get(openslide.PROPERTY_NAME_OBJECTIVE_POWER)
if MAG_BASE is None:
MAG_BASE = self._objective
first_level = int(math.log2(float(MAG_BASE) / self._base_mag)) # raw / input, 40/20=2, 40/40=0
target_levels = [i + first_level for i in self._mag_levels] # levels start from 0
target_levels.reverse()
tiler = DeepZoomImageTiler(dz, basename, target_levels, MAG_BASE, self._format, associated,
self._queue)
tiler.run()
def _url_for(self, associated):
if associated is None:
base = VIEWER_SLIDE_NAME
else:
base = self._slugify(associated)
return '%s.dzi' % base
def _copydir(self, src, dest):
if not os.path.exists(dest):
os.makedirs(dest)
for name in os.listdir(src):
srcpath = os.path.join(src, name)
if os.path.isfile(srcpath):
shutil.copy(srcpath, os.path.join(dest, name))
@classmethod
def _slugify(cls, text):
text = normalize('NFKD', text.lower()).encode('ascii', 'ignore').decode()
return re.sub('[^a-z0-9]+', '_', text)
def _shutdown(self):
for _i in range(self._workers):
self._queue.put(None)
self._queue.join()
def nested_patches(img_slide, out_base, level=(0,), ext='jpeg'):
print('\n Organizing patches')
img_name = img_slide.split(os.sep)[-1].split('.')[0]
img_class = img_slide.split(os.sep)[2]
n_levels = len(glob.glob('WSI_temp_files/*'))
bag_path = os.path.join(out_base, img_class, img_name)
os.makedirs(bag_path, exist_ok=True)
if len(level) == 1:
patches = glob.glob(os.path.join('WSI_temp_files', '*', '*.' + ext))
for i, patch in enumerate(patches):
patch_name = patch.split(os.sep)[-1]
shutil.move(patch, os.path.join(bag_path, patch_name))
sys.stdout.write('\r Patch [%d/%d]' % (i + 1, len(patches)))
print('Done.')
else:
level_factor = 2 ** int(level[1] - level[0])
levels = [int(os.path.basename(i)) for i in glob.glob(os.path.join('WSI_temp_files', '*'))]
levels.sort()
low_patches = glob.glob(os.path.join('WSI_temp_files', str(levels[0]), '*.' + ext))
for i, low_patch in enumerate(low_patches):
low_patch_name = low_patch.split(os.sep)[-1]
shutil.move(low_patch, os.path.join(bag_path, low_patch_name))
low_patch_folder = low_patch_name.split('.')[0]
high_patch_path = os.path.join(bag_path, low_patch_folder)
os.makedirs(high_patch_path, exist_ok=True)
low_x = int(low_patch_folder.split('_')[0])
low_y = int(low_patch_folder.split('_')[1])
high_x_list = list(range(low_x * level_factor, (low_x + 1) * level_factor))
high_y_list = list(range(low_y * level_factor, (low_y + 1) * level_factor))
for x_pos in high_x_list:
for y_pos in high_y_list:
high_patch = glob.glob(
os.path.join('WSI_temp_files', str(levels[1]), '{}_{}.'.format(x_pos, y_pos) + ext))
if len(high_patch) != 0:
high_patch = high_patch[0]
shutil.move(high_patch, os.path.join(bag_path, low_patch_folder, high_patch.split(os.sep)[-1]))
os.rmdir(os.path.join(bag_path, low_patch_folder))
os.remove(low_patch)
sys.stdout.write('\r Patch [%d/%d]' % (i + 1, len(low_patches)))
print('Done.')
if __name__ == '__main__':
Image.MAX_IMAGE_PIXELS = None
parser = argparse.ArgumentParser(description='Patch extraction for camelyon16')
parser.add_argument(
'-d', '--dataset', type=str,
default='camelyon16', # Changed to camelyon16
help='Dataset name'
)
parser.add_argument('-e', '--overlap', type=int, default=0, help='Overlap of adjacent tiles [0]')
parser.add_argument('-f', '--format', type=str, default='jpeg', help='Image format for tiles [jpeg]')
parser.add_argument(
'-v', '--slide_format', type=str, default='tif',
help='Image format for tiles [svs]' # changed to TIF (for Camelyon16)
)
parser.add_argument('-j', '--workers', type=int, default=8,
help='Number of worker processes to start [4]') # 12 because i have many cores
parser.add_argument(
'-q', '--quality', type=int, default=75,
help='JPEG compression quality [70]' # We changed the default quality to 75, the default of pillow
)
parser.add_argument(
'-s', '--tile_size', type=int, default=256,
help='Tile size [256]' # We changed the default to 256 for a more accurate comparison with other methods
)
parser.add_argument(
'-b', '--base_mag', type=float, default=20,
help='Maximum magnification for patch extraction [20]'
)
parser.add_argument(
'-o', '--objective', type=float, default=20,
help='The default objective power if metadata does not present [20]'
)
parser.add_argument(
'-t', '--background_t', type=int, default=20,
help='Threshold for filtering background [15]' # Changed to 20
)
args = parser.parse_args()
levels = [1]
path_base = os.path.join('datasets', args.dataset)
out_base = os.path.join('datasets', args.dataset, 'single')
all_slides = glob.glob(os.path.join(path_base, '0_normal/*.' + args.slide_format)) + \
glob.glob(os.path.join(path_base, '1_tumor/*.' + args.slide_format))
# pos-i_pos-j -> x, y
tile_label_csv = open("datasets/camelyon16/tile_label.csv", "a")
tile_label_csv.write('slide_name,label\n')
tile_label_csv.close()
for idx, c_slide in enumerate(all_slides):
print('Process slide {}/{} : {}'.format(idx + 1, len(all_slides), c_slide))
DeepZoomStaticTiler(c_slide, 'WSI_temp', levels, args.base_mag, args.objective, args.format, args.tile_size,
args.overlap, True, args.quality, args.workers, args.background_t).run()
nested_patches(c_slide, out_base, levels, ext=args.format)
shutil.rmtree('WSI_temp_files')
tile_label_csv.close()
print('Patch extraction done for {} slides.'.format(len(all_slides)))