-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
1043 lines (889 loc) · 43.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import argparse
import ast
import copy
import itertools
import json
import multiprocessing as mp
import os
import re
import sys
import time
from typing import Tuple, Optional
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
import wandb
from lightly.utils.scheduler import CosineWarmupScheduler
from sklearn.metrics import accuracy_score
from sklearn.utils import shuffle
from torch.autograd import Variable
from torch.nn.modules.loss import _Loss
import metrics
import snuffy
import snuffy_multiclass
from froc import mp_computeFROC_list_no_cache
from utils import (
WEIGHT_INITS, OPTIMIZERS,
pretty_print, print_table, replace_key_names, delete_files_for_epoch,
to_wandb_format, NumpyFloatValuesEncoder,
load_data, load_mil_data,
dropout_patches, multi_label_roc, compute_pos_weight
)
print('Imports Finished.')
device = "cuda" if torch.cuda.is_available() else "cpu"
EMBEDDINGS_PATH = 'embeddings/'
CAMELYON16_REFERENCE = 'datasets/camelyon16/reference.csv'
CAMELYON16_MASK_PATH = 'datasets/camelyon16/masks'
SAVE_PATH = 'runs/'
ROC_PATH = 'roc/'
HISTOPATHOLOGY_DATASETS = ['camelyon16', 'tcga']
MIL_DATASETS = ['musk1', 'musk2', 'elephant']
# important to know
# what we call Lambda in paper is k here
def get_args_parser():
parser = argparse.ArgumentParser(description='Train MIL Models on patch features learned by the SSL method')
parser.add_argument('--num_classes', default=1, type=int, help='Number of output classes [2]')
parser.add_argument('--feats_size', default=512, type=int, help='Dimension of the feature size [512]')
parser.add_argument('--lr', default=2e-4, type=float, help='Initial learning rate [0.0002]')
parser.add_argument('--num_epochs', default=200, type=int, help='Number of total training epochs [40|200]')
parser.add_argument('--gpu_index', type=int, nargs='+', default=(0,), help='GPU ID(s) [0]')
parser.add_argument('--weight_decay', default=5e-3, type=float, help='Weight decay [5e-3]')
parser.add_argument('--eta_min', default=5e-06)
parser.add_argument('--dataset', default='camelyon16', type=str, help='Dataset folder name')
parser.add_argument('--embedding', default='SimCLR', type=str, help='Embeddings to be used for feature computation')
parser.add_argument('--split', default=0.2, type=float, help='Training/Validation split [0.2]')
parser.add_argument('--dropout_patch', default=0, type=float, help='Patch dropout rate [0]')
parser.add_argument(
'--weight_init__weight_init_i__weight_init_b',
default='[\'xavier_normal\', \'xavier_normal\', \'xavier_normal\']',
help='weight initialization'
)
parser.add_argument('--optimizer', default='adam', type=str, choices=['adam', 'adamw', 'sgd'], help='optimizer')
parser.add_argument('--scheduler', default='cosine', type=str, choices=['cosinewarmup', 'cosine'],
help='scheduler')
parser.add_argument('--num_processes', default=8, type=int,
help='number of processes for multiprocessing of data loading')
parser.add_argument('--wandb_run',
help='Name for the wandb run. The model logs will be saved at `run/dataset/{wandb_run}_run_number/`')
parser.add_argument('--use_mp', default=1, choices=[0, 1], type=int,
help='use multiprocessing for dataloading or not')
parser.add_argument('--arch', default='snuffy', type=str, help='architecture')
parser.add_argument('--bins', default=10, type=int, help='number of bins for calibration')
# For MIL datasets (Musk1, Musk2, Elephant)
parser.add_argument('--cv_num_folds', default=10, type=int, help='Number of cross validation fold [10]')
parser.add_argument('--cv_current_fold', default=0, type=int, help='Current fold for cross validation')
parser.add_argument('--cv_valid_ratio', default=0.2, type=float, help='Current fold for cross validation')
# For SmallWeightTrainer (and its subclasses)
parser.add_argument('--soft_average', default=0, choices=[0, 1], type=int)
parser.add_argument('--single_weight__lr_multiplier', default=0.1, type=float,
help='intial lr multiplied by this number for single_weight')
# For SnuffyTrainer
parser.add_argument('--num_heads', default=6, type=int)
parser.add_argument('--big_lambda', default=200, type=int, help='top k')
parser.add_argument('--random_patch_share', default=0.0, type=float, help='dropout in encoder')
parser.add_argument('--mlp_multiplier', default=4, type=int, help='inverted mlp anti-bottbleneck')
parser.add_argument('--encoder_dropout', default=0.0, type=float, help='dropout in encoder')
parser.add_argument('--activation', default='relu', type=str, help='activation function used in semi transforer')
parser.add_argument('--clip_grad', default=None, type=float, help='gradient clipping or not and the way to do it')
parser.add_argument(
'--depth', default=1, type=int,
help="depth of transformer = number of encoder blocks"
)
parser.add_argument(
'--betas', default='[0.5, 0.9]', help='betas of adamw optimizer'
)
# For ROC curve
parser.add_argument(
'--roc_run_name', type=str, help="Name of the run for which we're saving predictions and labels."
)
parser.add_argument(
'--roc_run_epoch', type=int, help="Epoch number of the run for which we're saving predictions and labels."
)
parser.add_argument(
'--roc_data_split', default='test', type=str, choices=['train', 'valid', 'test'],
help="Data Split for which we're saving predictions and labels"
)
# For DINO
parser.add_argument('--l2normed_embeddings', default=0, type=int,
help='whether to l2 norm embeddings before feed forward or not')
# For wandb sweep
parser.add_argument(
'--seed', default=1, choices=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18], type=int,
help='This doesnt do anything, Each combination of the sweep should be run 5 times'
)
return parser
def mp_thresholding(args):
data, threshold, key = args
data = list(filter(lambda x: x[0] > threshold, data))
return key, data
class Trainer:
def __init__(self, args):
self.args = args
self.milnet = self._get_milnet()
self._load_init_weights()
self.__is_criterion_set = False
self.criterion = self._get_criterion()
self.optimizer = self._get_optimizer()
self.scheduler = self._get_scheduler()
self.froc_path = './froc'
def _get_milnet(self) -> nn.Module:
raise NotImplementedError
def _get_criterion(self) -> Optional[_Loss]:
# For MIL datasets, For all models (ours and DSMIL) (not ABMIL), criterion should be weighted BCE,
# where weights are determined by train split labels.
self.__is_criterion_set = not (
self.args.dataset in MIL_DATASETS
)
return nn.BCEWithLogitsLoss()
def _get_optimizer(self) -> optim.Optimizer:
try:
optimizer_cls = OPTIMIZERS[self.args.optimizer]
except KeyError:
raise Exception(f'Optimizer not found. Given: {self.args.optimizer}, Have: {OPTIMIZERS.keys()}')
print(
f'Optimizer {self.args.optimizer} with lr={self.args.lr}, betas={(self.args.betas[0], self.args.betas[1])}, wd={self.args.weight_decay}'
)
return optimizer_cls(
params=self.milnet.parameters(),
lr=self.args.lr,
betas=(self.args.betas[0], self.args.betas[1]),
weight_decay=self.args.weight_decay
)
def _get_scheduler(self):
if self.args.scheduler == 'cosine':
return torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer=self.optimizer,
T_max=self.args.num_epochs,
eta_min=self.args.eta_min
)
elif self.args.scheduler == 'cosinewarmup':
return CosineWarmupScheduler(
optimizer=self.optimizer,
warmup_epochs=int(self.args.num_epochs / 20),
max_epochs=self.args.num_epochs
)
else:
print(f'Scheduler set to None')
return None
def _load_init_weights(self):
try:
weight_init_i_part = WEIGHT_INITS[self.args.weight_init__weight_init_i__weight_init_b[1]]
weight_init_b_part = WEIGHT_INITS[self.args.weight_init__weight_init_i__weight_init_b[2]]
print(f'\n\nweight_init_i_part: {weight_init_i_part}')
print(f'weight_init_b_part: {weight_init_b_part}\n\n')
# ------------------------------
self.milnet.i_classifier.apply(weight_init_i_part)
self.milnet.b_classifier.apply(weight_init_b_part)
# ------------------------------
except KeyError:
if self.args.weight_init__weight_init_i__weight_init_b[0] is not None:
raise Exception(
f'Weight init not found. Given: {self.args.weight_init__weight_init_i__weight_init_b[0]}, Have: {WEIGHT_INITS.keys()} ')
@staticmethod
def _should_calc_feats_metrics(data):
"""
TCGA dataset doesn't have patch-level labels. Therefore, we can't calculate feat metrics for it.
Official DSMIL-WSI features do not have patch-lebel labels either.
"""
return data[2] is not None
def train(self, data, cur_epoch):
self.milnet.train()
if data[2] is not None:
data = shuffle(data[0], data[1], data[2], data[3])
else:
data = shuffle(data[0], data[1])
data = data[0], data[1], None, None
all_labels, all_feats, all_feats_labels, all_positions = data
num_bags = len(all_labels)
if device == 'cpu':
Tensor = torch.FloatTensor
else:
Tensor = torch.cuda.FloatTensor
total_loss = 0
labels = all_labels
predictions = []
feat_labels = all_feats_labels
feat_predictions = []
if not self.__is_criterion_set:
pos_weight = torch.tensor(compute_pos_weight(labels), device=device)
self.criterion = nn.BCEWithLogitsLoss(pos_weight)
self.__is_criterion_set = True
for i in range(num_bags):
bag_label, bag_feats = labels[i], all_feats[i]
if self.args.l2normed_embeddings == 1:
bag_feats = bag_feats / np.linalg.norm(bag_feats, axis=1, keepdims=True)
bag_feats = dropout_patches(bag_feats, self.args.dropout_patch)
# ------------------------
bag_label = Variable(Tensor(np.array([bag_label])).to(device)) # .unsqueeze(dim=0)
bag_feats = Variable(Tensor(np.array([bag_feats])).to(device)) # .unsqueeze(dim=0)
# ------------------------
bag_prediction, loss, attentions = self._run_model(bag_feats, bag_label)
loss.backward()
# ----------------------------------------
step = num_bags * (cur_epoch - 1) + i
self._after_run_model_in_training_mode(step=step, num_bags=num_bags, batch_idx=i)
# ----------------------------------------
total_loss = total_loss + loss.item()
step_train_metrics = {'step_train_bag_loss': loss.item()}
wandb.log(step_train_metrics)
sys.stdout.write('\r Training bag [%d/%d] bag loss: %.4f' % (i, num_bags, loss.item()))
with torch.no_grad():
predictions.extend([bag_prediction])
if self._should_calc_feats_metrics(data):
feat_predictions.extend(attentions.cpu().numpy().squeeze())
labels = np.array(labels)
predictions = np.array(predictions)
accuracy, auc_scores, _ = self._calc_metrics(labels, predictions)
feats_accuracy, feats_auc_scores = None, None
if self._should_calc_feats_metrics(data):
feat_labels = list(itertools.chain(*feat_labels)) # convert a list of lists to a flat list
feat_labels = np.array(feat_labels)
feat_predictions = np.array(feat_predictions)
feats_accuracy, feats_auc_scores, _ = self._calc_feats_metrics(
feat_labels, feat_predictions
)
res = {
'epoch_train_loss': total_loss / num_bags,
'epoch_train_accuracy': accuracy,
'epoch_train_aucs': auc_scores,
'epoch_train_feat_accuracy': feats_accuracy,
'epoch_train_feat_aucs': feats_auc_scores,
}
return res
def valid(self, data, predefined_thresholds_optimal=None, predefined_feats_thresholds_optimal=None,
plot_prefix=None, metric=None, mode='valid'):
is_test = (mode != 'valid')
self.milnet.eval()
if data[2] is not None:
data = shuffle(data[0], data[1], data[2], data[3], data[4])
else:
data = shuffle(data[0], data[1])
data = data[0], data[1], None, None, None
all_labels, all_feats, all_feats_labels, all_positions, all_image_names = data
num_bags = len(all_labels)
if device == 'cpu':
Tensor = torch.FloatTensor
else:
Tensor = torch.cuda.FloatTensor
# converts positions from string to int, might want to optimize later
if is_test and self.args.dataset == 'camelyon16':
reg = r'[^\d]*(\d+)[^\d]*(\d+)[^\d]*'
all_positions_int = [
[
tuple(map(int, re.search(reg, positions).group(1, 2)))
for positions in slide_positions
]
for slide_positions in all_positions
]
total_loss = 0
labels = all_labels
predictions = []
feat_labels = all_feats_labels
feat_predictions = []
# for froc
detections = []
detections_dict = {}
# for ece
if (mode == 'test' and self.args.dataset == 'camelyon16'):
self._calibration_cal(data[:4], metric)
with torch.no_grad():
for i in range(num_bags):
bag_label, bag_feats = labels[i], all_feats[i]
# ------------------------
if self.args.l2normed_embeddings == 1:
bag_feats = bag_feats / np.linalg.norm(bag_feats, axis=1, keepdims=True)
# ------------------------
bag_label = Variable(Tensor(np.array([bag_label])).to(device))
bag_feats = Variable(Tensor(np.array([bag_feats])).to(device))
bag_prediction, loss, attentions = self._run_model(bag_feats, bag_label)
if (is_test and self.args.dataset == 'camelyon16'):
slide_detections = [(float(prob), position[0] * 512 + 256, position[1] * 512 + 256)
for position, prob in
zip(all_positions_int[i], attentions.cpu().numpy().squeeze())]
detections.append(slide_detections)
total_loss = total_loss + loss.item()
step_validation_metrics = {
'step_valid_bag_loss': loss.item()
}
wandb.log(step_validation_metrics)
sys.stdout.write('\r Testing bag [%d/%d] bag loss: %.4f' % (i, num_bags, loss.item()))
predictions.extend([bag_prediction])
if self._should_calc_feats_metrics(data):
feat_predictions.extend(attentions.cpu().numpy().squeeze())
accuracy, auc_scores, thresholds_optimal = self._calc_metrics(
labels, predictions, predefined_thresholds_optimal
)
if self.args.for_roc_curve:
print(f'\nPredictions: {predictions}')
print(f'Labels: {labels}')
roc_base_dir = os.path.join(ROC_PATH, self.args.roc_run_name)
os.makedirs(roc_base_dir, exist_ok=True)
labels_predictions_f_path = os.path.join(roc_base_dir, f'{self.args.roc_run_epoch}.npz')
np.savez(labels_predictions_f_path, labels=labels, predictions=predictions, )
print(f'\n\nSaved at {labels_predictions_f_path}')
feats_accuracy, feats_auc_scores, feats_thresholds_optimal = None, None, None
if self._should_calc_feats_metrics(data):
feat_labels = list(itertools.chain(*feat_labels)) # convert a list of lists to a flat list
feat_labels = np.array(feat_labels)
feat_predictions = np.array(feat_predictions)
feats_accuracy, feats_auc_scores, feats_thresholds_optimal = \
self._calc_feats_metrics(feat_labels, feat_predictions, predefined_feats_thresholds_optimal)
res = {
'epoch_valid_loss': total_loss / num_bags,
'epoch_valid_accuracy': accuracy,
'epoch_valid_aucs': auc_scores,
'epoch_valid_thresholds_optimal': thresholds_optimal,
'epoch_valid_feat_accuracy': feats_accuracy,
'epoch_valid_feat_aucs': feats_auc_scores,
'epoch_valid_feats_thresholds_optimal': feats_thresholds_optimal,
}
if self._should_calc_feats_metrics(data) and is_test and self.args.dataset == 'camelyon16':
with mp.Pool(self.args.num_processes) as pool:
res_ = pool.map(mp_thresholding, [(data, feats_thresholds_optimal[0], key) for data, key in
zip(detections, all_image_names)])
for key, data in res_:
detections_dict[key] = data
challenge_froc_score = mp_computeFROC_list_no_cache(
CAMELYON16_REFERENCE,
CAMELYON16_MASK_PATH,
detections_dict,
os.path.join(self.froc_path, 'results'),
False,
True,
5, # mask level
all_image_names,
self.froc_path,
plot_prefix,
self.args.num_processes
)
res['epoch_valid_challenge_froc_score'] = challenge_froc_score
return res
def _calibration_cal(self, data, metric):
self.milnet.eval()
all_labels, all_feats, all_feats_labels, all_positions = data
num_bags = len(all_labels)
if device == 'cpu':
Tensor = torch.FloatTensor
else:
Tensor = torch.cuda.FloatTensor
total_loss = 0
labels = all_labels
predictions = []
feat_labels = all_feats_labels
feat_predictions = []
# ------------------
softmaxes = np.zeros((num_bags, self.args.num_classes))
with torch.no_grad():
for i in range(num_bags):
bag_label, bag_feats = labels[i], all_feats[i]
# ------------------------
if self.args.l2normed_embeddings == 1:
bag_feats = bag_feats / np.linalg.norm(bag_feats, axis=1, keepdims=True)
# ------------------------
bag_label = Variable(Tensor(np.array([bag_label])).to(device))
bag_feats = Variable(Tensor(np.array([bag_feats])).to(device))
bag_prediction, loss, attentions = self._run_model(bag_feats, bag_label)
if (self.args.num_classes == 1):
softmaxes[i] = bag_prediction
else:
for j in range(self.args.num_classes):
softmaxes[i, j] = bag_prediction[j]
labels_np = np.array(labels)
# --------------------------
ece_criterion = metrics.ECELoss()
# --------------------------
ece_error = ece_criterion.loss(softmaxes, labels_np, 0.5, n_bins=self.args.bins, logits=False)
wandb.log({f"calibration/ECE/{metric}": ece_error})
def test(self, data, thresholds_optimal, feats_thresholds_optimal, plot_prefix, metric):
res = self.valid(
data,
thresholds_optimal,
feats_thresholds_optimal,
plot_prefix=plot_prefix,
metric=metric,
mode='test'
) # solved
res = replace_key_names(d=res, old_term='valid', new_term='test')
return res
def _run_model(self, bag_feats, bag_label) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
raise NotImplementedError
def _after_run_model_in_training_mode(self, step, num_bags, batch_idx):
if self.args.clip_grad is not None:
torch.nn.utils.clip_grad_norm_(self.milnet.parameters(), max_norm=self.args.clip_grad)
self.optimizer.step()
self.optimizer.zero_grad()
def _calc_metrics(self, labels, predictions, predefined_thresholds_optimal=None):
assert len(labels) == len(predictions), \
f"Number of predictions ({len(predictions)}) and labels ({len(labels)}) do not match"
num_bags = len(labels)
labels = np.array(labels)
predictions = np.array(predictions)
auc_scores, _, thresholds_optimal = multi_label_roc(labels, predictions, self.args.num_classes)
if predefined_thresholds_optimal is not None:
thresholds_optimal = predefined_thresholds_optimal
if self.args.num_classes == 1:
class_prediction_bag = copy.deepcopy(predictions)
class_prediction_bag[predictions >= thresholds_optimal[0]] = 1
class_prediction_bag[predictions < thresholds_optimal[0]] = 0
predictions = class_prediction_bag
labels = np.squeeze(labels)
else:
for i in range(self.args.num_classes):
class_prediction_bag = copy.deepcopy(predictions[:, i])
class_prediction_bag[predictions[:, i] >= thresholds_optimal[i]] = 1
class_prediction_bag[predictions[:, i] < thresholds_optimal[i]] = 0
predictions[:, i] = class_prediction_bag
bag_score = 0
for i in range(num_bags):
bag_score += np.array_equal(labels[i], predictions[i])
accuracy = bag_score / num_bags
return accuracy, auc_scores, thresholds_optimal
def _calc_feats_metrics(self, feats_labels, feats_predictions, predefined_thresholds_optimal=None):
auc_scores, _, thresholds_optimal = multi_label_roc(
feats_labels, feats_predictions, self.args.num_classes, for_feats=True
)
if predefined_thresholds_optimal is not None:
thresholds_optimal = predefined_thresholds_optimal
accuracy = accuracy_score(
feats_labels,
(feats_predictions >= thresholds_optimal[0]).astype(int)
)
return accuracy, auc_scores, thresholds_optimal
class Runner:
def __init__(self, args, trainer: Trainer):
self.args = args
self.trainer = trainer
self._set_dirs()
if self.args.dataset in HISTOPATHOLOGY_DATASETS:
if self.args.embedding == 'official':
self.train_data, self.valid_data, self.test_data = self._get_official_data()
else:
self.train_data, self.valid_data, self.test_data = self._get_data()
elif self.args.dataset in MIL_DATASETS:
self.train_data, self.valid_data, self.test_data = load_mil_data(args)
print(
f'Num Bags'
f' (Train: {len(self.train_data[0])})'
f' (Valid: {len(self.valid_data[0])})'
f' (Test: {len(self.test_data[0])})'
)
def _set_dirs(self):
self.save_path = os.path.join(SAVE_PATH, self.args.dataset, wandb.run.name)
self.trainer.froc_path = self.save_path
os.makedirs(self.save_path, exist_ok=True)
def _get_data(self):
"""
bag_df: [column_0] [column_1]
path_to_bag_feats_csv label
"""
path_prefix = os.path.join('.', EMBEDDINGS_PATH, self.args.dataset, self.args.embedding)
bags_csv = os.path.join(path_prefix, self.args.dataset + '.csv')
bags_df = pd.read_csv(bags_csv)
# --------------------------------
if self.args.dataset == 'camelyon16':
train_df, valid_df, test_df = self._get_dataframe_splits_by_folder(bags_df, path_prefix)
elif self.args.dataset == 'tcga':
train_df, valid_df, test_df = self._get_dataframe_splits_by_folder(bags_df, path_prefix)
print(f'Num Bags (Train: {len(train_df)}) (Valid: {len(valid_df)}) (Test: {len(test_df)})')
train_data = self._load_split_data(train_df, 'train')
valid_data = self._load_split_data(valid_df, 'valid')
test_data = self._load_split_data(test_df, 'test')
return train_data, valid_data, test_data
def _get_official_data(self):
bags_csv = os.path.join(EMBEDDINGS_PATH, self.args.dataset, 'official', f'{self.args.dataset.capitalize()}.csv')
bags_df = pd.read_csv(bags_csv)
train_df, valid_df, test_df = self._get_dataframe_splits_by_args(bags_df)
train_df = shuffle(train_df).reset_index(drop=True)
valid_df = shuffle(valid_df).reset_index(drop=True)
test_df = shuffle(test_df).reset_index(drop=True)
train_data = self._load_split_data(train_df, 'train')
valid_data = self._load_split_data(valid_df, 'valid')
test_data = self._load_split_data(test_df, 'test')
return train_data, valid_data, test_data
def _get_dataframe_splits_by_folder(self, bags_df, path_prefix):
split_names = ['train', 'valid', 'test']
dataframe_splits = (
bags_df[
bags_df['0'].str.startswith(f'{path_prefix}/{split_name}')
] for split_name in split_names
)
return dataframe_splits
def _get_dataframe_splits_by_args(self, bags_df):
train_df = bags_df.iloc[0:int(len(bags_df) * (1 - self.args.split)), :]
valid_df = bags_df.iloc[int(len(bags_df) * (1 - self.args.split)):, :]
valid_df, test_df = (
valid_df.iloc[0:len(valid_df) // 2, :],
valid_df.iloc[len(valid_df) // 2:, :]
)
return train_df, valid_df, test_df
def _load_split_data(self, split_path, split_name):
print(f'Loading {split_name} data... (mp={self.args.use_mp})...')
start_time = time.time()
data = load_data(split_path, self.args)
print(f'DONE (Took {(time.time() - start_time):.1f}s)')
return data
def _log_initial_metrics(self):
initial_metrics = self.trainer.valid(self.valid_data) # solved
print(f'\nInitial Metrics')
print_table(initial_metrics)
initial_metrics_file_path = os.path.join(self.save_path, f'initial_results.txt')
with open(initial_metrics_file_path, 'w') as f:
json.dump(initial_metrics, f, cls=NumpyFloatValuesEncoder)
wandb.save(initial_metrics_file_path)
def _load_epoch_model(self, epoch: int):
model_save_path = os.path.join(self.save_path, f'{epoch}.pth')
log_save_path = os.path.join(self.save_path, f'thresholds_{epoch}.txt')
single_weight_parameter_save_path = os.path.join(self.save_path, f'single_weight_parameter_{epoch}')
self.trainer.milnet.load_state_dict(torch.load(model_save_path), strict=True)
with open(log_save_path, 'r') as f:
epoch_valid_metrics = json.load(f)
thresholds_optimal = np.asarray(a=eval(epoch_valid_metrics['thresholds_optimal']), dtype=np.float32)
report = f'Using thresholds_optimal: {thresholds_optimal}'
feats_thresholds_optimal = epoch_valid_metrics['feats_thresholds_optimal']
if feats_thresholds_optimal is not None:
feats_thresholds_optimal = np.asarray(a=eval(feats_thresholds_optimal), dtype=np.float32)
report += f' feats_thresholds_optimal: {feats_thresholds_optimal}'
if hasattr(self.trainer, 'single_weight_parameter'):
report += f' single_weight_parameter: {self.trainer.single_weight_parameter}'
self.trainer.single_weight_parameter = torch.load(single_weight_parameter_save_path)
print(report)
return thresholds_optimal, feats_thresholds_optimal
def _save_epoch_model(
self,
thresholds_optimal: list,
epoch: int,
auc: float,
feats_thresholds_optimal=None,
report_prefix: str = None,
):
model_save_path = os.path.join(self.save_path, f'{epoch}.pth')
log_save_path = os.path.join(self.save_path, f'thresholds_{epoch}.txt')
single_weight_parameter_save_path = os.path.join(self.save_path, f'single_weight_parameter_{epoch}')
model_report = f'model saved at: {model_save_path}'
torch.save(self.trainer.milnet.state_dict(), model_save_path)
thresholds_report = f'threshold: {str(thresholds_optimal)}'
with open(log_save_path, 'w') as f:
json.dump({
'auc': auc,
'thresholds_optimal': str(thresholds_optimal),
'feats_thresholds_optimal': str(
feats_thresholds_optimal
) if feats_thresholds_optimal is not None else None
}, f)
single_weight_parameter_report = ''
if hasattr(self.trainer, 'single_weight_parameter'):
single_weight_parameter_report = f'single_weight_parameter: {self.trainer.single_weight_parameter}'
torch.save(self.trainer.single_weight_parameter, single_weight_parameter_save_path)
should_log_report = report_prefix is not None
if should_log_report:
print(f'\t[{report_prefix}] {model_report} {thresholds_report} {single_weight_parameter_report}')
def run(self):
best_auc_epochs = self.run_train()
self.run_test(best_auc_epochs)
self.clean_up(best_auc_epochs)
def run_train(self):
best_auc = 0
best_auc_epochs = []
self._log_initial_metrics()
for epoch in range(1, self.args.num_epochs + 1):
start_train_epoch_time = time.time()
epoch_train_metrics = self.trainer.train(self.train_data, epoch)
start_valid_epoch_time = time.time()
epoch_valid_metrics = self.trainer.valid(self.valid_data)
end_valid_epoch_time = time.time()
valid_aucs = epoch_valid_metrics['epoch_valid_aucs']
thresholds_optimal = epoch_valid_metrics['epoch_valid_thresholds_optimal']
feats_thresholds_optimal = epoch_valid_metrics['epoch_valid_feats_thresholds_optimal']
epoch_train_time = int(start_valid_epoch_time - start_train_epoch_time)
epoch_valid_time = int(end_valid_epoch_time - start_valid_epoch_time)
wandb.log({
'epoch': epoch,
'epoch_train_time': epoch_train_time,
'epoch_valid_time': epoch_valid_time,
**to_wandb_format(epoch_train_metrics),
**to_wandb_format(epoch_valid_metrics),
})
print(
'\rEpoch [%d/%d] time %.1fs train loss: %.4f test loss: %.4f,'
' thresholds_optimal: %s, feats_thresholds_optimal: %s, accuracy: %.4f, AUC: ' % (
epoch,
self.args.num_epochs,
epoch_train_time + epoch_valid_time,
epoch_train_metrics['epoch_train_loss'],
epoch_valid_metrics['epoch_valid_loss'],
epoch_valid_metrics['epoch_valid_thresholds_optimal'],
epoch_valid_metrics['epoch_valid_feats_thresholds_optimal'],
epoch_valid_metrics['epoch_valid_accuracy']
) +
'|'.join('class-{0}>>{1:.4f}'.format(*k) for k in enumerate(valid_aucs))
)
if self.trainer.scheduler is not None:
self.trainer.scheduler.step()
current_auc = valid_aucs[0]
report_prefix = ''
if current_auc >= best_auc:
report_prefix += '[best auc]'
if current_auc > best_auc:
best_auc_epochs = []
best_auc = current_auc
best_auc_epochs.append(epoch)
self._save_epoch_model(
thresholds_optimal, epoch, current_auc, feats_thresholds_optimal, report_prefix=report_prefix
)
train_metrics = {
'best_auc': best_auc,
'best_auc_epochs': best_auc_epochs,
}
with open(os.path.join(self.save_path, 'train_metrics.json'), 'w') as f:
json.dump(train_metrics, f)
print(f'Train Metrics')
print(json.dumps(train_metrics) + '\n')
earliest_best_auc_epoch = min(best_auc_epochs, default=None)
return [earliest_best_auc_epoch]
def run_test(self, best_auc_epochs):
earliest_best_auc_epoch = min(best_auc_epochs, default=None)
last_epoch = self.args.num_epochs
special_epochs = [
(earliest_best_auc_epoch, 'best_auc'),
(last_epoch, 'last_epoch'),
]
special_epochs = [x for x in special_epochs if x[0] is not None]
for epoch, plot_prefix in special_epochs:
start_test_epoch_time = time.time()
thresholds_optimal, feats_thresholds_optimal = self._load_epoch_model(epoch)
epoch_test_metrics = self.trainer.test(self.test_data, thresholds_optimal, feats_thresholds_optimal,
plot_prefix=plot_prefix, metric=plot_prefix)
res = replace_key_names(d=epoch_test_metrics, old_term='epoch', new_term=plot_prefix)
epoch_test_time = int(time.time() - start_test_epoch_time)
wandb.log({
'epoch': epoch,
'epoch_test_time': epoch_test_time,
**to_wandb_format(res),
})
print('\r', end='')
print_table({
'epoch_test_time': epoch_test_time,
**epoch_test_metrics
})
print()
def clean_up(self, best_auc_epochs):
last_epoch = self.args.num_epochs
special_epochs = list(
set(best_auc_epochs + [last_epoch])
)
special_epochs = [x for x in special_epochs if x is not None]
wanted_epochs = []
for epoch in special_epochs:
wanted_epochs.extend(list(range(epoch - 0, epoch + 1)))
for epoch in range(1, self.args.num_epochs + 1):
if epoch not in wanted_epochs:
delete_files_for_epoch(self.save_path, epoch)
class SmallWeightTrainer(Trainer):
def __init__(self, args):
self.args = args
self.single_weight_parameter = self._get_single_weight_parameter()
super().__init__(args)
def _get_single_weight_parameter(self):
single_weight_parameter = torch.tensor(0.5, requires_grad=self.args.soft_average, device=device)
print('single_weight_parameter.requires_grad:', single_weight_parameter.requires_grad)
single_weight_parameter.data.clamp_(0, 1)
return single_weight_parameter
def _get_optimizer(self) -> optim.Optimizer:
try:
optimizer_cls = OPTIMIZERS[self.args.optimizer]
except KeyError:
raise Exception(f'Optimizer not found. Given: {self.args.optimizer}, Have: {OPTIMIZERS.keys()}')
print(
f'Optimizer {self.args.optimizer} with lr={self.args.lr}, betas={(self.args.betas[0], self.args.betas[1])}, wd={self.args.weight_decay}'
)
return optimizer_cls(
params=[
{'params': self.single_weight_parameter, 'lr': self.args.lr * self.args.single_weight__lr_multiplier},
{'params': self.milnet.parameters()}
],
lr=self.args.lr,
betas=(self.args.betas[0], self.args.betas[1]),
weight_decay=self.args.weight_decay
)
def _run_model(self, bag_feats, bag_label) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
ins_prediction, bag_prediction, attentions = self.milnet(bag_feats)
if len(ins_prediction.shape) == 2:
max_prediction, _ = torch.max(ins_prediction, 0)
else:
max_prediction, _ = torch.max(ins_prediction, 1)
bag_loss = self.criterion(bag_prediction.view(1, -1), bag_label.view(1, -1))
max_loss = self.criterion(max_prediction.view(1, -1), bag_label.view(1, -1))
loss = self.single_weight_parameter * bag_loss + (1 - self.single_weight_parameter) * max_loss
with torch.no_grad():
bag_prediction = (
(1 - self.single_weight_parameter) * torch.sigmoid(max_prediction) +
self.single_weight_parameter * torch.sigmoid(bag_prediction)
).squeeze().cpu().numpy()
return bag_prediction, loss, ins_prediction
def train(self, data, cur_epoch):
res = super().train(data, cur_epoch)
return res
def _after_run_model_in_training_mode(self, step, num_bags, batch_idx):
super()._after_run_model_in_training_mode(step, num_bags, batch_idx)
self.single_weight_parameter.data.clamp_(0, 1)
def __str__(self):
return f'Single_Weight__sa{self.args.soft_average}'
class Snuffy(SmallWeightTrainer):
def _get_milnet(self) -> nn.Module:
i_classifier = snuffy.FCLayer(in_size=self.args.feats_size,
out_size=self.args.num_classes).to(device)
c = copy.deepcopy
attn = snuffy.MultiHeadedAttention(
self.args.num_heads,
self.args.feats_size,
).to(device)
ff = snuffy.PositionwiseFeedForward(
self.args.feats_size,
self.args.feats_size * self.args.mlp_multiplier,
self.args.activation,
self.args.encoder_dropout
).to(device)
b_classifier = snuffy.BClassifier(
snuffy.Encoder(
snuffy.EncoderLayer(
self.args.feats_size,
c(attn),
c(ff),
self.args.encoder_dropout,
self.args.big_lambda,
self.args.random_patch_share
), self.args.depth
),
self.args.num_classes,
self.args.feats_size
).to(device)
milnet = snuffy.MILNet(i_classifier, b_classifier).to(device)
init_funcs_registry = {
'trunc_normal': nn.init.trunc_normal_,
'kaiming_uniform': nn.init.kaiming_uniform_,
'kaiming_normal': nn.init.kaiming_normal_,
'xavier_uniform': nn.init.xavier_uniform_,
'xavier_normal': nn.init.xavier_normal_,
'orthogonal': nn.init.orthogonal_
}
modules = [(self.args.weight_init__weight_init_i__weight_init_b[1], 'i_classifier'),
(self.args.weight_init__weight_init_i__weight_init_b[2], 'b_classifier')]
print('modules:', modules)
for init_func_name, module_name in modules:
init_func = init_funcs_registry.get(init_func_name)
print('init_func:', init_func)
for name, p in milnet.named_parameters():
if p.dim() > 1 and name.split(".")[0] == module_name:
init_func(p)
return milnet
def _run_model(self, bag_feats, bag_label) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
bag_prediction, loss, ins_prediction = super()._run_model(bag_feats, bag_label)
ins_prediction = ins_prediction.view(-1, 1)
return bag_prediction, loss, torch.sigmoid(ins_prediction)
def __str__(self):
return f'Snuffy_k{self.args.big_lambda}_sa{self.args.soft_average}_depth{self.args.depth}'
class SnuffyMulticlass(SmallWeightTrainer):
def _get_milnet(self) -> nn.Module:
i_classifier = snuffy_multiclass.FCLayer(in_size=self.args.feats_size,
out_size=self.args.num_classes).to(device)
c = copy.deepcopy
attn = snuffy_multiclass.MultiHeadedAttention(
self.args.num_heads,
self.args.feats_size,
).to(device)
ff = snuffy_multiclass.PositionwiseFeedForward(
self.args.feats_size,
self.args.feats_size * self.args.mlp_multiplier,
self.args.activation,
).to(device)
b_classifier = snuffy_multiclass.BClassifier(
snuffy_multiclass.Encoder(
snuffy_multiclass.EncoderLayer(
self.args.feats_size,
c(attn),
c(ff),
self.args.num_classes,
self.args.encoder_dropout,
self.args.big_lambda,
self.args.random_patch_share
), self.args.depth
),
self.args.num_classes,
self.args.feats_size
).to(device)
milnet = snuffy_multiclass.MILNet(i_classifier, b_classifier).to(device)
# TODO move this part to the `_load_init_weights` method
init_funcs_registry = {
'trunc_normal': nn.init.trunc_normal_,
'kaiming_uniform': nn.init.kaiming_uniform_,
'kaiming_normal': nn.init.kaiming_normal_,
'xavier_uniform': nn.init.xavier_uniform_,
'xavier_normal': nn.init.xavier_normal_,
'orthogonal': nn.init.orthogonal_
}
modules = [(self.args.weight_init__weight_init_i__weight_init_b[1], 'i_classifier'),
(self.args.weight_init__weight_init_i__weight_init_b[2], 'b_classifier')]
print('modules:', modules)
for init_func_name, module_name in modules:
init_func = init_funcs_registry.get(init_func_name)
print('init_func:', init_func)
for name, p in milnet.named_parameters():
if p.dim() > 1 and name.split(".")[0] == module_name:
init_func(p)
return milnet
def _run_model(self, bag_feats, bag_label) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
bag_prediction, loss, ins_prediction = super()._run_model(bag_feats, bag_label)
ins_prediction = ins_prediction.view(-1, 1)
return bag_prediction, loss, torch.sigmoid(ins_prediction)
def __str__(self):
return f'Snuffy_Multiclass_k{self.args.big_lambda}_sa{self.args.soft_average}_depth{self.args.depth}'
def validate_args(args):
args.use_mp = bool(args.use_mp)
args.soft_average = bool(args.soft_average)
args.for_roc_curve = (
args.roc_run_name is not None and args.roc_run_epoch is not None
)
mil_dataset_to_num_feats_mapping = {
'musk1': 166,
'musk2': 166,
'elephant': 230,
}
if args.dataset in mil_dataset_to_num_feats_mapping.keys():
args.feats_size = mil_dataset_to_num_feats_mapping[args.dataset]
print(f'Setting feats_size to {args.feats_size} for {args.dataset}')