Skip to content

jagogardiner/Doodlecode

Repository files navigation

Doodlecode

Final year project for AAI 2023/2024

Project Description

Doodlecode is a YoloV8 Keras & PyTorch (Ultralytics) implementation for object detection in sketches of websites, converting them into HTML code using a multi-agent system. The object detection model is trained on a custom dataset of sketches of websites, and the multi-agent system is responsible for converting the detected objects into HTML code. The project is implemented in Python and uses the Flask framework for the web application.

Doodlecode can be used as a Python module or script.

Python Module

import doodlecode
doodle = doodlecode.Doodlecode()

# To predict
doodle.predict('path/to/sketch.jpg', iou=0.7, confidence=0.5, ultralytics=True/False) # switch between Keras and Ultralytics

# To train
doodle.train_model(ultralytics=True/False) # switch between Keras and Ultralytics

See more options in main doodlecode.py file.

Python Script

python doodlecode.py --predict path/to/sketch.jpg --iou 0.7 --confidence 0.5 (--ultralytics True) # switch between Keras and Ultralytics

python doodlecode.py --train # training with Ultralytics is not supported

See more options in main doodlecode.py file.

Credits

About

Transform your sketches into HTML code using AI.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published