-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmyANOVA.txt
83 lines (71 loc) · 3.34 KB
/
myANOVA.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
myANOVA <- function(scale, nominal) { #calling the function
nominal = as.factor(nominal)
levels = length(table(nominal))
if (levels == 1) {# only one level
return("there is only one level for the nominal variable, an Anova test is not possible \n\n")
}
else if(levels == 2) {# only two levels
return("There are only two levels in the nominal variable, perhaps a t.test would be better \n\n")
}
else {# there are at least 3 levels
outliers = c()# check for any outliers
for (level in 1:length(table(nominal))) {# for each level
lower = quantile(scale[nominal == level], na.rm = TRUE)[2]
upper = quantile(scale[nominal == level], na.rm = TRUE)[4]
difference = upper-lower
outliers = c(outliers, scale[nominal == level & (scale < (lower - (1.5 * difference)) | scale > (upper + (1.5 * difference)))])
}
if (length(na.omit(outliers)) > 0){# then there are outliers
cat("There are", paste(length(na.omit(outliers)), "outliers from a total sample size of" , length(na.omit(scale)),
". They might affect the results of the test. \n\n"))#
deleteOutliers = readline("Delete the outliers?")
if (toupper(deleteOutliers) == "Y" || toupper(deleteOutliers) == "YES") {
for (level in 1:length(table(nominal))) {
lower = quantile(scale[nominal == level], na.rm = TRUE)[2]
upper = quantile(scale[nominal == level], na.rm = TRUE)[4]
difference = upper-lower
scale[nominal == level & (scale < (lower - (1.5 * difference)) | scale > (upper + (1.5 * difference)))] = NA
}
cat("Outliers deleted \n\n")
}
else if (toupper(deleteOutliers) == "N" || toupper(deleteOutliers) == "NO") {
cat("The outliers have been kept \n\n")
}
else {
return("Invalid Input \n\n")
}
}
myAnova = aov(scale ~ as.factor(nominal)) #Declaring the function myAnova with a scale variable and a nominal variable
isNormal = T
isSignificant = T
result = summary(myAnova)[[1]][[5]][[1]] # just the P value
kruskal = kruskal.test(scale ~ nominal)
Kresult = (kruskal)[[3]][[1]]
boxplot(scale ~ nominal, horizontal = TRUE) #printing out a box plot of the findings
if ((result < 0.05) && (Kresult < 0.05)) {
levels = levels(nominal)
for (level in 1:length(table(nominal))) { # for each level
if (length(table(scale[nominal]==level)) > 50) {# too many levels for Shapiro Test
return("There are more than 50 levels to test, perhaps a Kolmogorov-Smirnov test will be more suitable \n\n")
if (shapiro.test(scale[nominal==level])[2] < 0.05) {# if the p value is less than 0.05
isNormal = F
}
}
}
}
aov <- aov(scale ~ nominal)
postHoc <- TukeyHSD(aov)# running TukeyHSD test as a post hoc
pairs = postHoc$nominal[, 'p adj'] < 0.05
for (pair in pairs) {# for each p-value collected
string = print(pairs)
}
levene = levene.test(scale, nominal)
isHomogeneous = levene[2] < 0.05
if (isHomogeneous & isNormal) {
return("A statistically significant finding has been made. \n\n" )
}
else {
return("Not statistically significant finding. \n\n" )
}
}
}