-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathcomfyui_uncrop.py
181 lines (141 loc) · 4.88 KB
/
comfyui_uncrop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
from typing import NamedTuple
import torch
import torchvision.transforms.functional as F
from torchvision.transforms import InterpolationMode
NODE_CLASS_MAPPINGS = {}
NODE_DISPLAY_NAME_MAPPINGS = {}
def register_node(identifier: str, display_name: str):
def decorator(cls):
NODE_CLASS_MAPPINGS[identifier] = cls
NODE_DISPLAY_NAME_MAPPINGS[identifier] = display_name
return cls
return decorator
MAX_RESOLUTION = 8192
def validate_bounds(img: torch.Tensor, x: int, y: int, w: int, h: int):
_, img_h, img_w, _ = img.shape
assert x >= 0
assert y >= 0
assert (
x + w <= img_w
), f"crop region out of bounds: crop {(x, y, w, h)} from image {(img_w, img_h)}"
assert (
y + h <= img_h
), f"crop region out of bounds: crop {(x, y, w, h)} from image {(img_w, img_h)}"
def crop_image(img: torch.Tensor, x: int, y: int, w: int, h: int):
validate_bounds(img, x, y, w, h)
to_x = x + w
to_y = y + h
return img[:, y:to_y, x:to_x, :]
def resize_image(img: torch.Tensor, w: int, h: int):
img = img.permute(0, 3, 1, 2)
img = F.resize(
img,
(h, w), # type: ignore
interpolation=InterpolationMode.BILINEAR,
antialias=True,
)
img = img.permute(0, 2, 3, 1)
return img
class CropRect(NamedTuple):
x: int
y: int
width: int
height: int
@register_node("JWUncropNewRect", "Uncrop: New rect")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"width": (
"INT",
{"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1},
),
"height": (
"INT",
{"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1},
),
}
}
RETURN_TYPES = ("CROP_RECT",)
FUNCTION = "execute"
def execute(
self,
x: int,
y: int,
width: int,
height: int,
) -> tuple[CropRect]:
return (CropRect(x, y, width, height),)
@register_node("JWUncropCrop", "Uncrop: Crop")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"image": ("IMAGE",),
"resize_length": ("INT", {"default": 512, "min": 8, "step": 8}),
"crop_rect": ("CROP_RECT",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
def execute(
self,
image: torch.Tensor,
resize_length: int,
crop_rect: CropRect,
) -> tuple[torch.Tensor]:
x, y, width, height = crop_rect
# crop the image
image = crop_image(image, x, y, width, height)
shortest_side = min(width, height)
scale_ratio = resize_length / shortest_side
new_width = round(round(width * scale_ratio / 8) * 8)
new_height = round(round(height * scale_ratio / 8) * 8)
image = resize_image(image, new_width, new_height)
return (image,)
@register_node("JWUncropUncrop", "Uncrop: Uncrop")
class _:
CATEGORY = "jamesWalker55"
INPUT_TYPES = lambda: {
"required": {
"original_image": ("IMAGE",),
"cropped_image": ("IMAGE",),
"cropped_mask": ("MASK",),
"crop_rect": ("CROP_RECT",),
}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "execute"
def execute(
self,
original_image: torch.Tensor,
cropped_image: torch.Tensor,
cropped_mask: torch.Tensor,
crop_rect: CropRect,
) -> tuple[torch.Tensor]:
x, y, width, height = crop_rect
validate_bounds(original_image, x, y, width, height)
# resize cropped image if needed
_, _h, _w, _ = cropped_image.shape
if _w != width or _h != height:
cropped_image = resize_image(cropped_image, width, height)
# resize cropped mask if needed
_h, _w = cropped_mask.shape[-2:]
if _w != width or _h != height:
cropped_mask = torch.reshape(cropped_mask, (1, _h, _w, 1))
cropped_mask = resize_image(cropped_mask, width, height)
cropped_mask = torch.reshape(cropped_mask, (height, width))
to_x = x + width
to_y = y + height
# https://easings.net/#easeOutQuint
weighted_mask = 1 - (1 - cropped_mask) ** 5
# blend original image with cropped image using mask
cropped_image = original_image[:, y:to_y, x:to_x, :] * (
1 - weighted_mask.view(1, *weighted_mask.shape, 1)
) + cropped_image * weighted_mask.view(1, *weighted_mask.shape, 1)
# paste cropped image into original image
original_image = original_image.clone()
original_image[:, y:to_y, x:to_x, :] = cropped_image
return (original_image,)