-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathMAPI-publication.jl
172 lines (126 loc) · 6.19 KB
/
MAPI-publication.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# MAPI-demo.jl
# Demonostration / scratchpad, orientated towards MAPI zone boundary acoustic tilts
using PyPlot
#pygui(true)
push!(LOAD_PATH,"./") # Temporary versions of modules in PWD
using SoftModeTISH
### Global variables
N=1500
QMax=150.0
#QMax=60 # to compare to Lucy's fit
QLimit=70.0 #xlim for plotting; so PDF and potential align
# Function to wrap everything that was in a script
function publicationimages(modename,V)
#dx=2E2/(N-1) # best guess from formula
dx=6.11e3/(N-1) # This value for the KE gets agreement with John's Fourier Method
evals,evecs=TISH(V,N,dx,QMax) # calculate with module
println(evals[1]," ",evals[3]," ",evals[4]) # Compare eigenvalues to John's code
#fig=figure(figsize=(12,8)) # Larger than normal figures, for nicer full screen graphs for talks
fontSize = 8
figSize = (7.5 / 2.54, 5.625 / 2.54) # Default is 8x6
# From Jonathan
#mpl.rc('font', **{ 'family' : 'serif', 'size' : fontSize, 'serif' : 'Times New Roman' });
#mpl.rc('lines', **{ 'linewidth' : 0.5 });
#PyPlot.matplotlib[:rc]("font", family="serif", serif="Times", size=18)
PyPlot.matplotlib[:rc]("font", family="serif", serif="Times New Roman", size=fontSize)
PyPlot.matplotlib[:rc]("lines",linewidth=0.5)
fig=figure(figsize=figSize)
# I hate PyPlot; labourious set all the axes lines to be sensible thinness
ax=axes()
ax[:spines]["left"][:set_linewidth](0.5)
ax[:spines]["right"][:set_linewidth](0.5)
ax[:spines]["bottom"][:set_linewidth](0.5)
ax[:spines]["top"][:set_linewidth](0.5)
TISHplot(V,evals,evecs,200,QMax) # Plot eigenmodes
PyPlot.ylim((-0.04,0.02))
PyPlot.xlim((-QLimit,QLimit))
PyPlot.tight_layout()
PyPlot.savefig(string(modename,"-Modes.png"), format="png", dpi=600)
print(evals[1],evals[3],evals[4])
#evals,evecs=TISH(r->10E-2*r^4-8E-2*r^2,N,5)
#evals,evecs=TISH(r->10E-2*r^4,N,20) # Single well potential
fig=figure(figsize=figSize)
#fig=figure()
# I hate PyPlot; labourious set all the axes lines to be sensible thinness
ax=axes()
ax[:spines]["left"][:set_linewidth](0.5)
ax[:spines]["right"][:set_linewidth](0.5)
ax[:spines]["bottom"][:set_linewidth](0.5)
ax[:spines]["top"][:set_linewidth](0.5)
ax[:yaxis][:set_ticklabels]([]) # Turn off numbers for tick lines, leave ticks
# Standardising against Jonathan's Matplotlib settings
xlabel(L"$Q_0$ [amu$^{\frac{1}{2}}$ $\AA$]")
#xlabel("Q")
ylabel("DoS")
#title("Nuclear Coordinate Density of State")
# Iterate over temperature and generate PDF figures
for T in [50,150,300,3000] #collect(1:10:1000) #[1,50,100,150,200,300,600,10000] #collect(1:300)
totaldensity=BEWeightedDensity(evals,evecs,T)
plot(collect(-QMax:2*QMax/N:QMax),totaldensity,label=@sprintf("%d K",T)) # Density profiles
fill_between(collect(-QMax:2*QMax/N:QMax),0,totaldensity,color="grey",alpha=0.15) # Add a filled curve in grey for PDF, with light alpha
# fill_between(collect(-QMax:2*QMax/N:QMax),0,totaldensity,color="pink") # Add a filled curve in pink for PDF
EPhCouple=totaldensity.*DeformationTabulated
# plot(EPhCouple,label=@sprintf("%d K",T)) # Q-resolved coupling
# fig=figure() # new figure please
# plt[:hist](EPhCouple,100)
@printf("T: %d E-Ph: %f eV\n",T,sum(EPhCouple))
# Plot this together in a vaguely pleasant way
# plot(totaldensity,label=@sprintf("%d K",T)) # Plot the PDF, with a label
end
legend(loc="upper center",fancybox="false",fontsize=fontSize) # Create a legend of all the existing plots using their labels as names
PyPlot.xlim((-QLimit,QLimit)) # Nb: Overwrites any fill_between commands; but keeps the Plots. Odd.
PyPlot.tight_layout()
PyPlot.savefig(string(modename,"-PDF.png"), format="png", dpi=600) # Transparent bit might cause bad things to happen
Ts=[]
EPhCouples=[]
for T in collect(1:10:1000)
totaldensity=BEWeightedDensity(evals,evecs,T)
EPhCouple=totaldensity.*DeformationTabulated
# plot(EPhCouple,label=@sprintf("%d K",T)) # Q-resolved coupling
push!(Ts,T)
push!(EPhCouples,sum(EPhCouple))
@printf("T: %d E-Ph: %f eV\n",T,sum(EPhCouple))
end
fig=figure(figsize=figSize)
#fig=figure()
# I hate PyPlot; labourious set all the axes lines to be sensible thinness
ax=axes()
ax[:spines]["left"][:set_linewidth](0.5)
ax[:spines]["right"][:set_linewidth](0.5)
ax[:spines]["bottom"][:set_linewidth](0.5)
ax[:spines]["top"][:set_linewidth](0.5)
xlabel(L"Temperature [$K$]")
ylabel(L"Electron Phonon Coupling [$meV$]")
plot(0.0,0.0) # spurious data point to pin axes to [0,] [0,]
plot(Ts,EPhCouples*1e3,marker="o",fillstyle="none",markersize=2) #1e3 to convert to meV from eV
PyPlot.tight_layout()
PyPlot.savefig(string(modename,"-ElectronPhononCoupling.png"), format="png", dpi=600)
end
# End of function wrapping
# General Mexican-hat double-well potential
#V=r->20E-2*r^4-10E-2*r^2
#DeformationPotential(Q)=160E-3*(Q/70.0)^2 # Vaguely fitted to Lucy's data; quadratic form
DeformationPotential(Q)=2.3E-5*Q^2 - 3.3E-10*Q^4 # Improved fit; data from Slack 10-07-16
# DeformationPotential(Q)=16E-2*abs(Q) # Linear form
# DeformationPotential(Q)=1.0 # constant
DeformationTabulated=[DeformationPotential(Q)::Float64 for Q in -QMax:(2.0*QMax)/N:QMax]
#show(DeformationTabulated)
#plot(DeformationTabulated,color="pink") # Q-resolved deformation potential
#R1 mode
modename="Biquad-R1"
V=Q-> -3.96276195741e-05*Q^2 + 1.05036527538e-08*Q^4 + 1.50096872115e-15*Q^6 + 7.23239952095e-19*Q^8
publicationimages(modename,V) #calculates, generates figures
#M1 mode
modename="Biquad-M1"
V=Q-> 8.15357577448e-18*Q + -2.6032640735e-05*Q^2 + 1.44432132845e-21*Q^3 + 8.98657195055e-09*Q^4 + -3.18891361563e-26*Q^5 + -5.16891155313e-14*Q^6 + 2.72146169582e-30*Q^7 + 6.92418668864e-19*Q^8
publicationimages(modename,V)
DeformationPotential(Q)=160E-3*(Q/70.0)^2 # Vaguely fitted to Lucy's data; quadratic form
DeformationTabulated=[DeformationPotential(Q)::Float64 for Q in -QMax:(2.0*QMax)/N:QMax]
#R1 mode
modename="Quad-R1"
V=Q-> -3.96276195741e-05*Q^2 + 1.05036527538e-08*Q^4 + 1.50096872115e-15*Q^6 + 7.23239952095e-19*Q^8
publicationimages(modename,V) #calculates, generates figures
#M1 mode
modename="Quad-M1"
V=Q-> 8.15357577448e-18*Q + -2.6032640735e-05*Q^2 + 1.44432132845e-21*Q^3 + 8.98657195055e-09*Q^4 + -3.18891361563e-26*Q^5 + -5.16891155313e-14*Q^6 + 2.72146169582e-30*Q^7 + 6.92418668864e-19*Q^8
publicationimages(modename,V)