-
Notifications
You must be signed in to change notification settings - Fork 1
/
Ch08.v
80 lines (69 loc) · 2.07 KB
/
Ch08.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
(* begin hide *)
Require Export HoTT Ch07.
(* end hide *)
(** printing <~> %\ensuremath{\eqvsym}% **)
(** printing == %\ensuremath{\sim}% **)
(** printing ^-1 %\ensuremath{^{-1}}% **)
(** %\part{Mathematics}% *)
(** * Homotopy theory *)
(** %\exer{8.1}{301}%
Prove that homotopy groups respect products: $\pi_{n}(A \times B) \eqvsym
\pi_{n}(A) \times \pi_{n}(B)$.
*)
(** %\soln%
*)
(*
Definition homotopy_group (n : nat) (A : Type) `{H : IsPointed A}
:= match n with
| O => Trunc 0 A
| S n => Trunc 0 (iterated_loops (S n) A).1
end.
*)
Lemma equiv_functor_Trunc (n : trunc_index) (A B : Type)
: (A <~> B) -> (Trunc n A) <~> (Trunc n B).
Proof.
intro e.
simple refine (equiv_adjointify _ _ _ _).
apply Trunc_rec. intro a. apply (tr (e a)).
apply Trunc_rec. intro b. apply (tr (e^-1 b)).
refine (Trunc_ind _ _).
intro b. simpl. apply (ap tr). apply eisretr.
refine (Trunc_ind _ _).
intro a. simpl. apply (ap tr). apply eissect.
Defined.
(*
Lemma equiv_functor_iLS (n : nat) (A B : Type) `{IsPointed A} `{IsPointed B}
: A <~> B -> (iteratedLoopSpace n A).1 <~> (iteratedLoopSpace n B).1.
Proof.
generalize dependent B. generalize dependent A.
induction n.
- intros A HA B HB. simpl. apply idmap.
- intros A HA B HB. intros e.
set (a := point A). set (b := point B).
simpl. apply equiv_idmap.
Defined.
*)
(*
Lemma hg_prod `{Funext} (n : nat) (A B : Type) `{IsPointed A} `{IsPointed B}
: homotopy_group n (A * B) <~> (homotopy_group n A) * (homotopy_group n B).
Proof.
generalize dependent B. generalize dependent A.
induction n.
- intros A HA B HB. simpl.
apply equiv_Trunc_prod_cmp. apply H.
- intros A HA B HB. set (a := point A). set (b := point B).
simpl.
equiv_via (Trunc 0 (iteratedLoopSpace n ((a = a) * (b = b))).1).
apply equiv_functor_Trunc.
Admitted.
*)
(** %\exer{8.2}{301}% *)
(** %\exer{8.3}{301}% *)
(** %\exer{8.4}{301}% *)
(** %\exer{8.5}{301}% *)
(** %\exer{8.6}{301}% *)
(** %\exer{8.7}{301}% *)
(** %\exer{8.8}{302}% *)
(** %\exer{8.9}{302}% *)
(** %\exer{8.10}{302}% *)
(** %\exer{8.11}{302}% *)