-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathinference.py
113 lines (96 loc) · 3.98 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import json
import os
import sys
import torch
import transformers
from peft import PeftModel
from finetune_hotpot import LazyHotpotSFTDataset
from finetune_quality import LazyQualitySFTDataset
from finetune_scrolls import LazyScrollsSFTDataset
from auto_compressor import LlocoAutoCompressorModel
from model import DataArguments, ModelArguments, TrainingArguments
from tqdm import tqdm
from vllm import LLM, SamplingParams
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
device = "cuda" if torch.cuda.is_available() else "cpu"
@torch.inference_mode()
def eval_scrolls():
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments)
)
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
max_tokens = data_args.max_new_tokens
eval_mode = data_args.eval_mode
if eval_mode == "baseline" or eval_mode == "baseline_nocontext":
sampling_params = SamplingParams(max_tokens=max_tokens)
model = LLM(model=model_args.model_name_or_path)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path
)
tokenizer.pad_token = "[PAD]"
else:
model = LlocoAutoCompressorModel.from_pretrained(
"princeton-nlp/AutoCompressor-Llama-2-7b-6k",
torch_dtype=torch.bfloat16 if training_args.bf16 is True else torch.float16)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_args.model_name_or_path)
tokenizer.pad_token = '[PAD]'
print("Loading Peft model...")
model = PeftModel.from_pretrained(
model.to(device),
training_args.peft_model,
torch_dtype=torch.float16,
)
print("=" * 50)
print(f"{model} model loaded!, device:{device}")
if data_args.dataset_name in ["narrative_qa", "qasper", "qmsum"]:
dataset = LazyScrollsSFTDataset(
tokenizer=tokenizer,
embedding_path=data_args.embedding_path,
dataset_name=data_args.dataset_name,
split="validation",
mode=data_args.eval_mode,
)
elif data_args.dataset_name == "quality":
dataset = LazyQualitySFTDataset(
tokenizer=tokenizer,
quality_path=data_args.data_path,
embedding_path=data_args.embedding_path,
split="validation",
mode=data_args.eval_mode,
)
elif data_args.dataset_name == "hotpot_qa":
dataset = LazyHotpotSFTDataset(
tokenizer=tokenizer,
embedding_path=data_args.embedding_path,
split="validation",
inference_mode=True,
mode=data_args.eval_mode
)
total = 0
res = {}
for i, entry in enumerate(tqdm(dataset)):
total += 1
if eval_mode == "baseline" or eval_mode == "baseline_nocontext":
output_ids = model.generate(
prompt_token_ids=[entry["decoder_input_ids"]],
sampling_params=sampling_params,
)[0]
predicted_text = output_ids.outputs[0].text.strip()
else:
prompt_len = entry["decoder_input_ids"].size(0)
output_ids = model.generate(input_ids=entry["decoder_input_ids"].unsqueeze(0),
softprompt=entry["context_embeddings"].unsqueeze(0).to(torch.float16),
max_new_tokens=max_tokens)[0]
predicted_text = tokenizer.decode(
output_ids[prompt_len:], skip_special_tokens=True
)
ground_truth = dataset.get_ground_truth(i)
print("----------------Predicted text ----------------\n", predicted_text)
print("---------------- Ground truth -----------------\n", ground_truth)
print("\n\n")
example_id = dataset.get_example_id(i)
res[example_id] = predicted_text
with open(data_args.out_path, "w+") as f:
json.dump(res, f)
if __name__ == "__main__":
eval_scrolls()