forked from kaistomics/DeepNeo-BCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict_63.py
74 lines (65 loc) · 2.48 KB
/
predict_63.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import tensorflow as tf
import pandas as pd
import numpy as np
from tensorflow.keras.utils import to_categorical
import sys
import pickle
import time
start_time = time.time()
import sys, os
from tensorflow.keras.models import load_model
import sys, os
os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[1]
mode=sys.argv[2]
#inputfile = sys.argv[1]
calpha = pd.read_csv('Data/Calpha.txt', sep="\t", header=0, index_col=0)
weight=[]
t=[]
hla = pd.read_csv('Data/BCR_IMGT_multiple_images.txt', sep="\t", header=None, index_col=0)
weight={}
for line in open('Data/Cell_SHM_weight_AA.txt'):
temp=line.strip().split('\t')
weight[temp[0]]=temp[1:]
dic_calpha={}
for i in range(calpha.shape[0]):
for j in range(calpha.shape[1]):
dic_calpha[(calpha.columns[i], calpha.index[j])] = calpha.iloc[i,j]
with open('Data/Linear_model_'+mode+'.pkl','rb') as file2:
linear_model = pickle.load(file2)
def get_array(pair):
thistype=str(pair[1]).split('-')[0]
mhc = hla.loc[pair[1]].values.tolist()[0]
epitope = pair[0]
score = []
try:
if len(epitope)==16:
for i in range(len(epitope)):
for j in range(len(mhc)):
if thistype in weight:
score.append(dic_calpha[(epitope[i], mhc[j].replace('.','O'))]*(1+float(weight[thistype][j])))
else:
thistype='All'
score.append(dic_calpha[(epitope[i], mhc[j].replace('.','O'))]*(1+float(weight[thistype][j])))
return np.reshape(score, (16,len(mhc),1))
except IndexError:
pass
modellist=[x.strip().split('\t')[0] for x in open('Data/modellist_'+mode+'.txt')]
def load_all_models(n_models):
all_models = list()
stackX=None
stackXMT=None
for i in range(len(modellist)):
model = load_model('Data/models/'+modellist[i])
tcr1 = pd.read_csv(sys.argv[3], sep="\t", header=None)
tcr1['allele']=modellist[i].split('_rr')[0]
arr = np.apply_along_axis(get_array, 1, tcr1)
mtpep=tcr1[0]
if stackX is None:
stackX=model.predict_step(arr)
else:
stackX = np.dstack((stackX, model.predict_step(arr)))
stackX = stackX.reshape((stackX.shape[0], stackX.shape[2]*stackX.shape[1]))
mtpred=linear_model.predict(stackX)
df = pd.DataFrame(np.column_stack((mtpep,mtpred)), columns = ['Input','BCR_score'])
df.to_csv(sys.argv[3]+'_'+mode+'_output.txt', sep="\t", header=True, index=False)
load_all_models(modellist)