-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththermo.py
473 lines (339 loc) · 14.2 KB
/
thermo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
"""This is a module for calculating nucleic acids thermodynamics
using nearest neighbor parameters.
The module contains only one class 'Thermo'. The class needs the
following custom modules: error, util and utilSeq. They should
come together with this module.
For more information about class 'Thermo', see the class for
details
"""
import sys, os
from pathlib import Path
import re
import math
import error
import util, utilSeq
class Thermo(object):
"""A class to calculate thermodynamics using nearest neighbor
parameters.
Constants and default values
_R_ --- The gas constant
_cp_ --- default concentration of primer (300 nM)
_ct_ --- default concentration of template (1.38e-15 nM)
_na_ --- default concentration of monovalent salt (100 mM)
_mg_ --- default concentration of divalent salt (0.0 mM)
_temper_ --- default temperature (65 C)
Attributes:
_nndH --- nearest neighbor parameters for enthalpy.
_nndS --- nearest neighbor parameters for entropy.
Methods:
thermoCal(*) --- calculates Tm, perB, dG, dH, dS, Tms, dGs
and dSs for all duplexes given in a dictionary.
perB is the percentage bound.
Tms, dGs and dSs are values under standard
conditions.
thermoCal0(*) --- calculates thermodynamics for one duplex.
getMelting(*) --- calculates the percentage bound for a duplex
at various temperatures given in a list.
_get_dHdS(*) --- Calculates dH and dS for one duplex.
_readNN(HorS) --- read the nearest neighbor parameters for dH or dS.
_perBcal(k, cp, ct) --- calculate the percentage bound (perB).
"""
_R_=1.987
_cp_=300.0
_ct_=1.38e-15
_na_=100.0
_mg_=0.0
_temper_=65.0
_nndH={}
_nndS={}
@staticmethod
def _readNN(HorS):
"""Read the nearest neighbor parameters from a file.
The file path is specified by an environment variable 'NNDIR'
or at the current working directory.
The parameters are made up of 4 6x6 blocks, ignoring blank and
comment lines.
The first row in each block is the top nearest neighbors
in 3'->5'. The first columns in the following 5 rows are the
bottom nearest neighbors in 5'->3' orientation. Together they
form one complete nearest neighbor 5'-top-3'/3'-bottom-5'.
Parameters:
HorS : str --- flag if to read for dH or dS.
Exceptions:
NNFileNotFoundError --- a custom error class, raised when
neither of the parameter files
"nnSH.csv" and "nnSS.csv" not found.
This could happen when the environment
variable 'NNDIR' not set or not pointing
to the folder where the parameter files
are or the parameter files are not at
the current working folder.
Return:
A dictionary. Its keys and values are the nearest neighbors and
the corresponding parameters, respectively
"""
if 'NNDIR' in os.environ:
folder=os.environ['NNDIR']
else:
folder=os.getcwd()
stem="nnSH.csv" if HorS=='dH' else "nnSS.csv"
name=Path(folder+'/'+stem)
try:
if not Path(name).exists():
raise error.NNFileNotFoundError()
except error.NNFileNotFoundError as e:
print(e)
sys.exit(1)
ls=util.readFileToList(name)
index=0
NN={}
while index < len(ls):
# read six (6) rows
# first row
bottom=re.split("[\t,]", ls[index])
# the following five (5) rows
for i in range(5):
index+=1
top=re.split("[\t,]", ls[index])
for j in range(1, 6):
value=float(top[j]) if len(top[j]) >0 else 0.0
NN[top[0]+"/"+bottom[j]]=value
# get reverse complementary
nn_t=''.join(reversed(bottom[j]))+"/"+''.join(reversed(top[0]))
NN[nn_t]=value
index+=1
return NN
@staticmethod
def _perBcal(k, cp, ct):
"""Calculate the percentage bound.
Paramaters:
k : float --- equilibrium constant
cp : float --- primer concentration
ct : float --- template concentration
Return:
float --- percentage bound
"""
c=cp/ct
b=-(c+1+1/k/ct)
# since b is always negative, i.e., b<0
x=math.sqrt(b*b-4.0*c)
p1=(-b+x)/2.0
p2=c/p1
perB=p1 if p1>=0.0 and p1<=1.0 else p2
return perB
def _get_dHdS(self, pair):
"""Calculates dH and dS for one duplex.
Parameters:
pair : str --- a duplex in "top/bottom" format.
The top is in 5'->3' orientation.
The bottom is in 3'->5' orientation.
It should have the same length.
Exceptions:
NNnotExistError --- custom error class, raised when an nearest
neighbor parameter does not exist.
This happens when there are more
than one mismatches in one nearest neighbor.
Return:
a list with dH and dS
"""
nndH=self._nndH
nndS=self._nndS
pair=pair.upper()
try:
if re.search("[^ACGT/]", pair):
raise error.NotDNAError(pair)
except error.NotDNAError as e:
print(e)
sys.exit(1)
temp=pair.split("/")
isSymm=1 if temp[0]==utilSeq.seqRC(temp[0]) else 0
top=list(temp[0])
bottom=list(temp[1])
try:
if len(top) !=len(bottom):
raise error.DuplexNotFlushError(pair)
except error.DuplexNotFlushError as e:
print(e)
sys.exit(1)
# initiation
dH=0.2
dS=-5.7
# propagation
for b in range(len(top)-1):
nn=top[b]+top[b+1]+'/'+bottom[b]+bottom[b+1]
try:
dH+=nndH[nn]
dS+=nndS[nn]
except KeyError:
try:
raise error.NNnotExistError(nn, top, bottom)
except error.NNnotExistError as e:
print(e)
sys.exit(1)
# symmetry correction
dS+=-1.4 if isSymm==1 else 0.0
# terminal AT correction
if (top[0]+bottom[0] != 'GC') and (top[0]+bottom[0] != 'CG'):
dH+=2.2
dS+=6.9
if (top[-1]+bottom[-1] != 'GC') and (top[-1]+bottom[-1] != 'CG'):
dH+=2.2
dS+=6.9
return [dH, dS]
def getMelting(self, pair, temp):
"""Calculates the percentage bound for a duplex at various
temperatures given in a list.
Parameters:
pair : str --- a duplex in "top/bottom" format.
The top is in 5'->3' orientation.
The bottom is in 3'->5' orientation.
It should have the same length.
temp : list --- temperatures in a list
Return:
A dictionary. Its key and value are temperature in celsius (c)
and percentage bound, respectively.
"""
cp=self._cp
ct=self._ct
R=self._R_
get_dHdS=self._get_dHdS
perBcal=self._perBcal
[dH, dS]=get_dHdS(pair)
melt={}
kelvin=[t+273.15 for t in temp]
for k in kelvin:
dG=dH-k*dS/1000
keq=math.exp(-dG*1000/R/k)
perB=perBcal(keq, cp, ct)
melt[k-273.15]=perB
return melt
def thermoCal0(self, pair, verbose=0):
"""Thermodynamics calculation for one duplex.
It calculates Tm, perB, dG, dH, dS, Tms, dGs and dSs for
the given duplex.
Parameters:
pair : str --- a duplex in "top/bottom" format.
The top is in 5'->3' orientation.
The bottom is in 3'->5' orientation.
It should have the same length.
verbose : int --- verbose level (default:0)
verbose=0: return only Tm.
verbose=1: verbose 0 + perB, dG, dH and dS.
verbose=2: verbose 1 + Tms, dGs and dSs.
Return:
*** everything is returned as string ***
Tm --- melting temperature under the given condition.
perB --- percentage bound.
dG, dH, dS --- thermodynamics calculated under the given condition
Tms --- Tm under conventional conditions.
meaning total oligo concentraton is 0.1 mM for self
complimentary duplexes; and 0.4 mM for non-self
complimentary duplexes and the two strands have the
same concentrations.
dGs, dSs --- thermodynamics under standard condition.
"""
R=self._R_
temper=self._temper
cp=self._cp
ct=self._ct
na=self._na
mg=self._mg
perBcal=self._perBcal
get_dHdS=self._get_dHdS
[dH, dS]=get_dHdS(pair)
# effective monovalent concentration
# Ahsen et. al, (2001), Clinical Chemistry, 47(11), 1956-61
na_eff=na+0.12*math.sqrt(mg*1000)
# sale correction for dS
# SantaLucia J Jr., (1998), PNAS, 95, 1460-65
n=(len(pair)-1)/2-1
dSeff=dS+0.368*n*math.log(na_eff)
dG=dH-temper*dSeff/1000
# at melting temperature, the equilibrium constant is
ktm=1/(cp-ct/2)
Tm=dH*1000/(dSeff-R*math.log(ktm))-273.15
Tm_str="{:7.2f}".format(Tm)
delimiter='\t'
out=pair+delimiter+Tm_str
if verbose>0:
k=math.exp(-dG*1000/R/temper)
perB=perBcal(k, cp, ct)
perB_str="{:6.3e}%".format(perB*100.0)
dG_str="{:8.3f}".format(dG)
dH_str="{:8.3f}".format(dH)
dSeff_str="{:8.3f}".format(dSeff)
temper_str="{:6.2f}".format(temper-273.15)
verb_str=delimiter.join([perB_str, dG_str, dH_str, dSeff_str
, temper_str])
cp_str=f"{cp*1e9:7.4e}"
ct_str=f"{ct*1e9:7.4e}"
na_str=f"{na*1e3:7.4e}"
mg_str=f"{mg*1e3:7.4e}"
unit_str=delimiter.join([cp_str, ct_str, na_str, mg_str])
if verbose ==1:
out+=delimiter+verb_str
out+=delimiter+unit_str
if verbose >=2:
dGs=dH-310.15*dS/1000
# under standard condition, the equilibirum constant is
ks=1e4
Tms=dH*1000/(dS-R*math.log(ks))-273.15
Tms_str="{:7.2f}".format(Tms)
dGs_str="{:8.3f}".format(dGs)
dSs_str="{:8.3f}".format(dS)
out+=delimiter+verb_str
out+=delimiter+delimiter.join([Tms_str, dGs_str, dSs_str])
out+=delimiter+unit_str
return out
def thermoCal(self, oligo, verbose=0):
"""Thermodynamics calculation for duplexes in a dictionary.
Parameters:
oligo : dictionary --- duplexes
verbose : int --- verbose level (default:0)
affects the amount of output.
see method 'thermoCal0' for details.
Return:
A list with thermodynamics calculated. The list is sorted by
the keys of the duplexes.
See method 'thermoCal0' for details.
"""
delimiter="\t"
# get an ordered list of duplexes
oligo_order=sorted(oligo.keys())
myThermo=[]
for o in oligo_order:
out_st=o+delimiter+self.thermoCal0(oligo[o], verbose)
myThermo.append(out_st)
return myThermo
def __init__(self, temper=_temper_, cp=_cp_, ct=_ct_, na=_na_, mg=_mg_):
"""Constructor.
1. Check the conditions.
2. Set the thermodynamics conditions including using defaults:
Turn the concentration units into M, and the temperature
from celcius to kelvin.
read the nearest neighbor parameters.
Parameters:
temper : float --- temperature (default: _temper_)
cp : float --- primer concentration (default: _cp_)
ct : float --- template concentration (default: _ct_)
na : float --- monovalent salt concentration (default: _na_)
mg : float --- divalent salt concentration (default: _mg_)
"""
if cp==0:
raise error.ConcentrationZeroError('cp')
if ct==0:
raise error.ConcentrationZeroError('ct')
if cp<ct:
raise error.ConcentrationOrderError
if temper>200 or temper<-100:
raise error.TemperatureRangeError
self._cp=float(cp)*1e-9
self._ct=float(ct)*1e-9
self._temper=float(temper)+273.15
self._na=float(na)*1e-3
self._mg=float(mg)*1e-3
self._nndH=self._readNN("dH")
self._nndS=self._readNN("dS")
def __repr__(self):
"""A string representation of the class."""
return "class:{}".format(__class__.__name__)