forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcustom_class.cpp
169 lines (147 loc) · 5.36 KB
/
custom_class.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#include <ATen/core/function_schema.h>
#include <ATen/core/functional.h>
#include <ATen/core/jit_type.h>
#include <ATen/core/type_factory.h>
#include <ATen/record_function.h>
#include <c10/util/flat_hash_map.h>
#include <torch/custom_class.h>
#include <torch/custom_class_detail.h>
#include <unordered_map>
namespace c10 {
static ska::flat_hash_map<std::type_index, c10::ClassTypePtr>&
getCustomClassTypeMap() {
static ska::flat_hash_map<std::type_index, c10::ClassTypePtr> tmap;
return tmap;
}
c10::ClassTypePtr getCustomClassTypeImpl(const std::type_index& tindex) {
auto& tmap = c10::getCustomClassTypeMap();
auto res = tmap.find(tindex);
if (C10_UNLIKELY(res == tmap.end())) {
// type_index is not guaranteed to be unique across shared libraries on some
// platforms For example see
// https://github.com/llvm-mirror/libcxx/blob/78d6a7767ed57b50122a161b91f59f19c9bd0d19/include/typeinfo#L133
// Also, this is not the case if RTLD_LOCAL option is used, see
// https://github.com/pybind/pybind11/blob/f791dc8648e1f6ec33f402d679b6b116a76d4e1b/include/pybind11/detail/internals.h#L101-L106
// Take a slow path of iterating over all registered types and compare their
// names
auto class_name = std::string(tindex.name());
for (const auto& it : tmap) {
if (class_name == it.first.name()) {
// Do not modify existing type map here as this template is supposed to
// be called only once per type from getCustomClassTypeImpl()
return it.second;
}
}
TORCH_CHECK(
false,
"Can't find class id in custom class type map for ",
tindex.name());
}
return res->second;
}
} // namespace c10
namespace torch {
namespace detail {
#if defined ENABLE_RECORD_KERNEL_FUNCTION_DTYPE
void record_custom_class(std::string name) {
RECORD_FUNCTION_WITH_SCOPE(
at::RecordScope::CUSTOM_CLASS,
std::move(name),
c10::ArrayRef<const c10::IValue>{});
}
#endif
} // namespace detail
static std::unordered_map<std::string, at::ClassTypePtr>& customClasses() {
static std::unordered_map<std::string, at::ClassTypePtr> customClasses;
return customClasses;
}
void registerCustomClass(at::ClassTypePtr class_type) {
TORCH_INTERNAL_ASSERT(class_type->name());
// NOLINTNEXTLINE(bugprone-unchecked-optional-access)
auto name = class_type->name()->qualifiedName();
TORCH_CHECK(
!customClasses().count(name),
"Custom class with name ",
name,
" is already registered. Ensure that registration with torch::class_ is only called once.");
customClasses()[name] = std::move(class_type);
}
at::ClassTypePtr getCustomClass(const std::string& class_name) {
auto ret =
customClasses().count(class_name) ? customClasses()[class_name] : nullptr;
if (ret) {
RECORD_CUSTOM_CLASS(class_name);
}
return ret;
}
const std::unordered_set<std::string> getAllCustomClassesNames() {
std::unordered_set<std::string> ret;
for (const auto& kv : customClasses()) {
ret.insert(kv.first);
}
return ret;
}
bool isCustomClass(const c10::IValue& v) {
return v.isObject() && v.toObject()->type()->name() &&
// NOLINTNEXTLINE(bugprone-unchecked-optional-access)
getCustomClass(v.toObject()->type()->name()->qualifiedName());
}
static std::vector<std::unique_ptr<jit::Function>>& customClassMethods() {
static std::vector<std::unique_ptr<jit::Function>> customClassMethods;
return customClassMethods;
}
void registerCustomClassMethod(std::unique_ptr<jit::Function> fn) {
customClassMethods().emplace_back(std::move(fn));
}
std::vector<c10::FunctionSchema> customClassSchemasForBCCheck() {
auto& methods = customClassMethods();
return c10::fmap(methods, [](const std::unique_ptr<jit::Function>& fn) {
return fn->getSchema();
});
}
namespace detail {
class_base::class_base(
const std::string& namespaceName,
const std::string& className,
std::string doc_string,
const std::type_info& intrusivePtrClassTypeid,
const std::type_info& taggedCapsuleClassTypeid)
: qualClassName(
"__torch__.torch.classes." + namespaceName + '.' + className),
classTypePtr(at::ClassType::create(
c10::QualifiedName(qualClassName),
std::weak_ptr<jit::CompilationUnit>(),
/*is_module=*/false,
std::move(doc_string))) {
detail::checkValidIdent(namespaceName, "Namespace name");
detail::checkValidIdent(className, "Class name");
classTypePtr->addAttribute(
"capsule", c10::TypeFactory::get<c10::CapsuleType>());
c10::getCustomClassTypeMap().insert(
{std::type_index(intrusivePtrClassTypeid), classTypePtr});
c10::getCustomClassTypeMap().insert(
{std::type_index(taggedCapsuleClassTypeid), classTypePtr});
registerCustomClass(classTypePtr);
}
c10::FunctionSchema class_base::withNewArguments(
const c10::FunctionSchema& schema,
std::initializer_list<arg> default_args) {
const auto& old_args = schema.arguments();
std::vector<c10::Argument> new_args;
new_args.reserve(old_args.size());
new_args.emplace_back(old_args[0]);
// Skip self.
size_t argIdx = 1;
for (const auto& default_arg : default_args) {
auto& old_arg = old_args[argIdx++];
new_args.emplace_back(
default_arg.name_,
old_arg.type(),
old_arg.real_type(),
old_arg.N(),
default_arg.value_);
}
return schema.cloneWithArguments(std::move(new_args));
}
} // namespace detail
} // namespace torch