forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFlattenIndicesCommon.h
106 lines (88 loc) · 3.27 KB
/
FlattenIndicesCommon.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#pragma once
#include <ATen/Tensor.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/Dispatch.h>
#include <ATen/native/sparse/Macros.h>
#include <ATen/ExpandUtils.h>
#include <ATen/native/SparseTensorUtils.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#include <ATen/NativeFunctions.h>
#else
#include <ATen/ops/arange.h>
#include <ATen/ops/tensor.h>
#endif
#ifdef GPUCC
#define NAME "flatten_indices_cuda"
#else
#define NAME "flatten_indices_cpu"
#endif
namespace at::native {
namespace {
template <template <typename func_t> class kernel_t>
struct KernelLauncher {
template <typename func_t>
static void launch(TensorIteratorBase& iter, const func_t& f) {
kernel_t<func_t>::launch(iter, f);
}
};
template <
template <typename func_t> class kernel_t,
typename index_t,
int64_t max_static_len = 0>
Tensor _flatten_indices_impl(const Tensor& indices, IntArrayRef size) {
TORCH_INTERNAL_ASSERT(indices.dim() > 1 && static_cast<size_t>(indices.size(0)) == size.size());
// Need owning storage in case of the Tensor class.
const auto hash_coeffs_storage = [&]() -> auto {
auto strides = c10::contiguous_strides(size);
return at::sparse::TensorGeometryHolder<max_static_len>(strides, strides, indices.options());
}();
const auto hash_coeffs = std::get<0>(*hash_coeffs_storage);
const auto hash_indices = [&]() -> Tensor {
// non-const because of gcc-5/clang-5 issues
auto sparse_dim = indices.size(0);
auto indices_dim_stride = indices.stride(0);
auto indices_nnz_stride = indices.stride(1);
auto hash = at::arange(indices.size(1), indices.options().dtype(kLong));
auto iter = TensorIteratorConfig()
.set_check_mem_overlap(false)
.add_output(hash)
.add_input(hash)
.build();
{
const auto* RESTRICT ptr_indices = indices.data_ptr<index_t>();
KernelLauncher<kernel_t>::launch(iter,
// NOTE: capture by value required by CUDA
[=] FUNCAPI (int64_t nnz_idx) -> int64_t {
const auto* RESTRICT ptr_indices_dim = ptr_indices + nnz_idx * indices_nnz_stride;
auto hash = static_cast<int64_t>(0);
for (int64_t dim = 0; dim < sparse_dim; ++dim) {
const auto dim_hash_coeff = hash_coeffs[dim];
const auto dim_index = ptr_indices_dim[dim * indices_dim_stride];
hash += dim_index * dim_hash_coeff;
}
return hash;
});
}
return hash;
}();
return hash_indices;
}
template <template <typename func_t> class kernel_t>
Tensor _flatten_indices(const Tensor& indices, IntArrayRef size) {
TORCH_CHECK(indices.dim() > 1 && static_cast<size_t>(indices.size(0)) == size.size(),
NAME, "(): the dimensionality of sparse `indices` and the length of `size` must match. ",
"Got `indices.size(0) == ", indices.size(0), "` != `size.size() == ", size.size(), "`.");
Tensor flattened_indices;
AT_DISPATCH_INDEX_TYPES(indices.scalar_type(), NAME, [&] () {
constexpr int64_t max_sparse_dims = 8;
if (indices.size(0) <= max_sparse_dims) {
flattened_indices = _flatten_indices_impl<kernel_t, index_t, max_sparse_dims>(indices, size);
} else {
flattened_indices = _flatten_indices_impl<kernel_t, index_t>(indices, size);
}
});
return flattened_indices;
}
}
} // at::native