-
Notifications
You must be signed in to change notification settings - Fork 3
/
audio_tools.py
4134 lines (3505 loc) · 146 KB
/
audio_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# License: BSD 3-clause
# Authors: Kyle Kastner
# Harvest, Cheaptrick, D4C, WORLD routines based on MATLAB code from M. Morise
# http://ml.cs.yamanashi.ac.jp/world/english/
# MGC code based on r9y9 (Ryuichi Yamamoto) MelGeneralizedCepstrums.jl
# Pieces also adapted from SPTK
from __future__ import division
import numpy as np
import scipy as sp
from numpy.lib.stride_tricks import as_strided
import scipy.signal as sg
from scipy.interpolate import interp1d
import wave
from scipy.cluster.vq import vq
from scipy import linalg, fftpack
from numpy.testing import assert_almost_equal
from scipy.linalg import svd
from scipy.io import wavfile
from scipy.signal import firwin
import zipfile
import tarfile
import os
import copy
import multiprocessing
from multiprocessing import Pool
import functools
import time
try:
import urllib.request as urllib # for backwards compatibility
except ImportError:
import urllib2 as urllib
def download(url, server_fname, local_fname=None, progress_update_percentage=5,
bypass_certificate_check=False):
"""
An internet download utility modified from
http://stackoverflow.com/questions/22676/
how-do-i-download-a-file-over-http-using-python/22776#22776
"""
if bypass_certificate_check:
import ssl
ctx = ssl.create_default_context()
ctx.check_hostname = False
ctx.verify_mode = ssl.CERT_NONE
u = urllib.urlopen(url, context=ctx)
else:
u = urllib.urlopen(url)
if local_fname is None:
local_fname = server_fname
full_path = local_fname
meta = u.info()
with open(full_path, 'wb') as f:
try:
file_size = int(meta.get("Content-Length"))
except TypeError:
print("WARNING: Cannot get file size, displaying bytes instead!")
file_size = 100
print("Downloading: %s Bytes: %s" % (server_fname, file_size))
file_size_dl = 0
block_sz = int(1E7)
p = 0
while True:
buffer = u.read(block_sz)
if not buffer:
break
file_size_dl += len(buffer)
f.write(buffer)
if (file_size_dl * 100. / file_size) > p:
status = r"%10d [%3.2f%%]" % (file_size_dl, file_size_dl *
100. / file_size)
print(status)
p += progress_update_percentage
def fetch_sample_speech_tapestry():
url = "https://www.dropbox.com/s/qte66a7haqspq2g/tapestry.wav?dl=1"
wav_path = "tapestry.wav"
if not os.path.exists(wav_path):
download(url, wav_path)
fs, d = wavfile.read(wav_path)
d = d.astype('float32') / (2 ** 15)
# file is stereo? - just choose one channel
return fs, d
def fetch_sample_file(wav_path):
if not os.path.exists(wav_path):
raise ValueError("Unable to find file at path %s" % wav_path)
fs, d = wavfile.read(wav_path)
d = d.astype('float32') / (2 ** 15)
# file is stereo - just choose one channel
if len(d.shape) > 1:
d = d[:, 0]
return fs, d
def fetch_sample_music():
url = "http://www.music.helsinki.fi/tmt/opetus/uusmedia/esim/"
url += "a2002011001-e02-16kHz.wav"
wav_path = "test.wav"
if not os.path.exists(wav_path):
download(url, wav_path)
fs, d = wavfile.read(wav_path)
d = d.astype('float32') / (2 ** 15)
# file is stereo - just choose one channel
d = d[:, 0]
return fs, d
def fetch_sample_speech_fruit(n_samples=None):
url = 'https://dl.dropboxusercontent.com/u/15378192/audio.tar.gz'
wav_path = "audio.tar.gz"
if not os.path.exists(wav_path):
download(url, wav_path)
tf = tarfile.open(wav_path)
wav_names = [fname for fname in tf.getnames()
if ".wav" in fname.split(os.sep)[-1]]
speech = []
print("Loading speech files...")
for wav_name in wav_names[:n_samples]:
f = tf.extractfile(wav_name)
fs, d = wavfile.read(f)
d = d.astype('float32') / (2 ** 15)
speech.append(d)
return fs, speech
def fetch_sample_speech_eustace(n_samples=None):
"""
http://www.cstr.ed.ac.uk/projects/eustace/download.html
"""
# data
url = "http://www.cstr.ed.ac.uk/projects/eustace/down/eustace_wav.zip"
wav_path = "eustace_wav.zip"
if not os.path.exists(wav_path):
download(url, wav_path)
# labels
url = "http://www.cstr.ed.ac.uk/projects/eustace/down/eustace_labels.zip"
labels_path = "eustace_labels.zip"
if not os.path.exists(labels_path):
download(url, labels_path)
# Read wavfiles
# 16 kHz wav
zf = zipfile.ZipFile(wav_path, 'r')
wav_names = [fname for fname in zf.namelist()
if ".wav" in fname.split(os.sep)[-1]]
fs = 16000
speech = []
print("Loading speech files...")
for wav_name in wav_names[:n_samples]:
wav_str = zf.read(wav_name)
d = np.frombuffer(wav_str, dtype=np.int16)
d = d.astype('float32') / (2 ** 15)
speech.append(d)
zf = zipfile.ZipFile(labels_path, 'r')
label_names = [fname for fname in zf.namelist()
if ".lab" in fname.split(os.sep)[-1]]
labels = []
print("Loading label files...")
for label_name in label_names[:n_samples]:
label_file_str = zf.read(label_name)
labels.append(label_file_str)
return fs, speech
def stft(X, fftsize=128, step="half", mean_normalize=True, real=False,
compute_onesided=True):
"""
Compute STFT for 1D real valued input X
"""
if real:
local_fft = fftpack.rfft
cut = -1
else:
local_fft = fftpack.fft
cut = None
if compute_onesided:
cut = fftsize // 2 + 1
if mean_normalize:
X -= X.mean()
if step == "half":
X = halfoverlap(X, fftsize)
else:
X = overlap(X, fftsize, step)
size = fftsize
win = 0.54 - .46 * np.cos(2 * np.pi * np.arange(size) / (size - 1))
X = X * win[None]
X = local_fft(X)[:, :cut]
return X
def istft(X, fftsize=128, step="half", wsola=False, mean_normalize=True,
real=False, compute_onesided=True):
"""
Compute ISTFT for STFT transformed X
"""
if real:
local_ifft = fftpack.irfft
X_pad = np.zeros((X.shape[0], X.shape[1] + 1)) + 0j
X_pad[:, :-1] = X
X = X_pad
else:
local_ifft = fftpack.ifft
if compute_onesided:
X_pad = np.zeros((X.shape[0], 2 * X.shape[1])) + 0j
X_pad[:, :fftsize // 2 + 1] = X
X_pad[:, fftsize // 2 + 1:] = 0
X = X_pad
X = local_ifft(X).astype("float64")
if step == "half":
X = invert_halfoverlap(X)
else:
X = overlap_add(X, step, wsola=wsola)
if mean_normalize:
X -= np.mean(X)
return X
def mdct_slow(X, dctsize=128):
M = dctsize
N = 2 * dctsize
N_0 = (M + 1) / 2
X = halfoverlap(X, N)
X = sine_window(X)
n, k = np.meshgrid(np.arange(N), np.arange(M))
# Use transpose due to "samples as rows" convention
tf = np.cos(np.pi * (n + N_0) * (k + 0.5) / M).T
return np.dot(X, tf)
def imdct_slow(X, dctsize=128):
M = dctsize
N = 2 * dctsize
N_0 = (M + 1) / 2
N_4 = N / 4
n, k = np.meshgrid(np.arange(N), np.arange(M))
# inverse *is not* transposed
tf = np.cos(np.pi * (n + N_0) * (k + 0.5) / M)
X_r = np.dot(X, tf) / N_4
X_r = sine_window(X_r)
X = invert_halfoverlap(X_r)
return X
def nsgcwin(fmin, fmax, n_bins, fs, signal_len, gamma):
"""
Nonstationary Gabor window calculation
References
----------
Velasco G. A., Holighaus N., Dorfler M., Grill T.
Constructing an invertible constant-Q transform with nonstationary Gabor
frames, Proceedings of the 14th International Conference on Digital
Audio Effects (DAFx 11), Paris, France, 2011
Holighaus N., Dorfler M., Velasco G. A. and Grill T.
A framework for invertible, real-time constant-Q transforms, submitted.
Original matlab code copyright follows:
AUTHOR(s) : Monika Dorfler, Gino Angelo Velasco, Nicki Holighaus, 2010-2011
COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA
http://nuhag.eu/
Permission is granted to modify and re-distribute this
code in any manner as long as this notice is preserved.
All standard disclaimers apply.
"""
# use a hanning window
# no fractional shifts
fftres = fs / signal_len
fmin = float(fmin)
fmax = float(fmax)
gamma = float(gamma)
nyq = fs / 2.
b = np.floor(n_bins * np.log2(fmax / fmin))
fbas = fmin * 2 ** (np.arange(b + 1) / float(n_bins))
Q = 2 ** (1. / n_bins) - 2 ** (-1. / n_bins)
cqtbw = Q * fbas + gamma
cqtbw = cqtbw.ravel()
maxidx = np.where(fbas + cqtbw / 2. > nyq)[0]
if len(maxidx) > 0:
# replicate bug in MATLAB version...
# or is it a feature
if sum(maxidx) == 0:
first = len(cqtbw) - 1
else:
first = maxidx[0]
fbas = fbas[:first]
cqtbw = cqtbw[:first]
minidx = np.where(fbas - cqtbw / 2. < 0)[0]
if len(minidx) > 0:
fbas = fbas[minidx[-1]+1:]
cqtbw = cqtbw[minidx[-1]+1:]
fbas_len = len(fbas)
fbas_new = np.zeros((2 * (len(fbas) + 1)))
fbas_new[1:len(fbas) + 1] = fbas
fbas = fbas_new
fbas[fbas_len + 1] = nyq
fbas[fbas_len + 2:] = fs - fbas[1:fbas_len + 1][::-1]
bw = np.zeros_like(fbas)
bw[0] = 2 * fmin
bw[1:len(cqtbw) + 1] = cqtbw
bw[len(cqtbw) + 1] = fbas[fbas_len + 2] - fbas[fbas_len]
bw[-len(cqtbw):] = cqtbw[::-1]
bw = bw / fftres
fbas = fbas / fftres
posit = np.zeros_like(fbas)
posit[:fbas_len + 2] = np.floor(fbas[:fbas_len + 2])
posit[fbas_len + 2:] = np.ceil(fbas[fbas_len + 2:])
base_shift = -posit[-1] % signal_len
shift = np.zeros_like(posit).astype("int32")
shift[1:] = (posit[1:] - posit[:-1]).astype("int32")
shift[0] = base_shift
bw = np.round(bw)
bwfac = 1
M = bw
min_win = 4
for ii in range(len(bw)):
if bw[ii] < min_win:
bw[ii] = min_win
M[ii] = bw[ii]
def _win(numel):
if numel % 2 == 0:
s1 = np.arange(0, .5, 1. / numel)
if len(s1) != numel // 2:
# edge case with small floating point numbers...
s1 = s1[:-1]
s2 = np.arange(-.5, 0, 1. / numel)
if len(s2) != numel // 2:
# edge case with small floating point numbers...
s2 = s2[:-1]
x = np.concatenate((s1, s2))
else:
s1 = np.arange(0, .5, 1. / numel)
s2 = np.arange(-.5 + .5 / numel, 0, 1. / numel)
if len(s2) != numel // 2: # assume integer truncate 27 // 2 = 13
s2 = s2[:-1]
x = np.concatenate((s1, s2))
assert len(x) == numel
g = .5 + .5 * np.cos(2 * np.pi * x)
return g
multiscale = [_win(bi) for bi in bw]
bw = bwfac * np.ceil(M / bwfac)
for kk in [0, fbas_len + 1]:
if M[kk] > M[kk + 1]:
multiscale[kk] = np.ones(M[kk]).astype(multiscale[0].dtype)
i1 = np.floor(M[kk] / 2) - np.floor(M[kk + 1] / 2)
i2 = np.floor(M[kk] / 2) + np.ceil(M[kk + 1] / 2)
# Very rarely, gets an off by 1 error? Seems to be at the end...
# for now, slice
multiscale[kk][i1:i2] = _win(M[kk + 1])
multiscale[kk] = multiscale[kk] / np.sqrt(M[kk])
return multiscale, shift, M
def nsgtf_real(X, multiscale, shift, window_lens):
"""
Nonstationary Gabor Transform for real values
References
----------
Velasco G. A., Holighaus N., Dorfler M., Grill T.
Constructing an invertible constant-Q transform with nonstationary Gabor
frames, Proceedings of the 14th International Conference on Digital
Audio Effects (DAFx 11), Paris, France, 2011
Holighaus N., Dorfler M., Velasco G. A. and Grill T.
A framework for invertible, real-time constant-Q transforms, submitted.
Original matlab code copyright follows:
AUTHOR(s) : Monika Dorfler, Gino Angelo Velasco, Nicki Holighaus, 2010-2011
COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA
http://nuhag.eu/
Permission is granted to modify and re-distribute this
code in any manner as long as this notice is preserved.
All standard disclaimers apply.
"""
# This will break with multchannel input
signal_len = len(X)
N = len(shift)
X_fft = np.fft.fft(X)
fill = np.sum(shift) - signal_len
if fill > 0:
X_fft_tmp = np.zeros((signal_len + shift))
X_fft_tmp[:len(X_fft)] = X_fft
X_fft = X_fft_tmp
posit = np.cumsum(shift) - shift[0]
scale_lens = np.array([len(m) for m in multiscale])
N = np.where(posit - np.floor(scale_lens) <= (signal_len + fill) / 2)[0][-1]
c = []
# c[0] is almost exact
for ii in range(N):
idx_l = np.arange(np.ceil(scale_lens[ii] / 2), scale_lens[ii])
idx_r = np.arange(np.ceil(scale_lens[ii] / 2))
idx = np.concatenate((idx_l, idx_r))
idx = idx.astype("int32")
subwin_range = posit[ii] + np.arange(-np.floor(scale_lens[ii] / 2),
np.ceil(scale_lens[ii] / 2))
win_range = subwin_range % (signal_len + fill)
win_range = win_range.astype("int32")
if window_lens[ii] < scale_lens[ii]:
raise ValueError("Not handling 'not enough channels' case")
else:
temp = np.zeros((window_lens[ii],)).astype(X_fft.dtype)
temp_idx_l = np.arange(len(temp) - np.floor(scale_lens[ii] / 2),
len(temp))
temp_idx_r = np.arange(np.ceil(scale_lens[ii] / 2))
temp_idx = np.concatenate((temp_idx_l, temp_idx_r))
temp_idx = temp_idx.astype("int32")
temp[temp_idx] = X_fft[win_range] * multiscale[ii][idx]
fs_new_bins = window_lens[ii]
fk_bins = posit[ii]
displace = fk_bins - np.floor(fk_bins / fs_new_bins) * fs_new_bins
displace = displace.astype("int32")
temp = np.roll(temp, displace)
c.append(np.fft.ifft(temp))
if 0:
# cell2mat concatenation
c = np.concatenate(c)
return c
def nsdual(multiscale, shift, window_lens):
"""
Calculation of nonstationary inverse gabor filters
References
----------
Velasco G. A., Holighaus N., Dorfler M., Grill T.
Constructing an invertible constant-Q transform with nonstationary Gabor
frames, Proceedings of the 14th International Conference on Digital
Audio Effects (DAFx 11), Paris, France, 2011
Holighaus N., Dorfler M., Velasco G. A. and Grill T.
A framework for invertible, real-time constant-Q transforms, submitted.
Original matlab code copyright follows:
AUTHOR(s) : Monika Dorfler, Gino Angelo Velasco, Nicki Holighaus, 2010-2011
COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA
http://nuhag.eu/
Permission is granted to modify and re-distribute this
code in any manner as long as this notice is preserved.
All standard disclaimers apply.
"""
N = len(shift)
posit = np.cumsum(shift)
seq_len = posit[-1]
posit = posit - shift[0]
diagonal = np.zeros((seq_len,))
win_range = []
for ii in range(N):
filt_len = len(multiscale[ii])
idx = np.arange(-np.floor(filt_len / 2), np.ceil(filt_len / 2))
win_range.append((posit[ii] + idx) % seq_len)
subdiag = window_lens[ii] * np.fft.fftshift(multiscale[ii]) ** 2
ind = win_range[ii].astype(np.int)
diagonal[ind] = diagonal[ind] + subdiag
dual_multiscale = multiscale
for ii in range(N):
ind = win_range[ii].astype(np.int)
dual_multiscale[ii] = np.fft.ifftshift(
np.fft.fftshift(dual_multiscale[ii]) / diagonal[ind])
return dual_multiscale
def nsgitf_real(c, c_dc, c_nyq, multiscale, shift):
"""
Nonstationary Inverse Gabor Transform on real valued signal
References
----------
Velasco G. A., Holighaus N., Dorfler M., Grill T.
Constructing an invertible constant-Q transform with nonstationary Gabor
frames, Proceedings of the 14th International Conference on Digital
Audio Effects (DAFx 11), Paris, France, 2011
Holighaus N., Dorfler M., Velasco G. A. and Grill T.
A framework for invertible, real-time constant-Q transforms, submitted.
Original matlab code copyright follows:
AUTHOR(s) : Monika Dorfler, Gino Angelo Velasco, Nicki Holighaus, 2010-2011
COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA
http://nuhag.eu/
Permission is granted to modify and re-distribute this
code in any manner as long as this notice is preserved.
All standard disclaimers apply.
"""
c_l = []
c_l.append(c_dc)
c_l.extend([ci for ci in c])
c_l.append(c_nyq)
posit = np.cumsum(shift)
seq_len = posit[-1]
posit -= shift[0]
out = np.zeros((seq_len,)).astype(c_l[1].dtype)
for ii in range(len(c_l)):
filt_len = len(multiscale[ii])
win_range = posit[ii] + np.arange(-np.floor(filt_len / 2),
np.ceil(filt_len / 2))
win_range = (win_range % seq_len).astype(np.int)
temp = np.fft.fft(c_l[ii]) * len(c_l[ii])
fs_new_bins = len(c_l[ii])
fk_bins = posit[ii]
displace = int(fk_bins - np.floor(fk_bins / fs_new_bins) * fs_new_bins)
temp = np.roll(temp, -displace)
l = np.arange(len(temp) - np.floor(filt_len / 2), len(temp))
r = np.arange(np.ceil(filt_len / 2))
temp_idx = (np.concatenate((l, r)) % len(temp)).astype(np.int)
temp = temp[temp_idx]
lf = np.arange(filt_len - np.floor(filt_len / 2), filt_len)
rf = np.arange(np.ceil(filt_len / 2))
filt_idx = np.concatenate((lf, rf)).astype(np.int)
m = multiscale[ii][filt_idx]
out[win_range] = out[win_range] + m * temp
nyq_bin = np.floor(seq_len / 2) + 1
out_idx = np.arange(
nyq_bin - np.abs(1 - seq_len % 2) - 1, 0, -1).astype(np.int)
out[nyq_bin:] = np.conj(out[out_idx])
t_out = np.real(np.fft.ifft(out)).astype(np.float64)
return t_out
def cqt(X, fs, n_bins=48, fmin=27.5, fmax="nyq", gamma=20):
"""
Constant Q Transform
References
----------
Velasco G. A., Holighaus N., Dorfler M., Grill T.
Constructing an invertible constant-Q transform with nonstationary Gabor
frames, Proceedings of the 14th International Conference on Digital
Audio Effects (DAFx 11), Paris, France, 2011
Holighaus N., Dorfler M., Velasco G. A. and Grill T.
A framework for invertible, real-time constant-Q transforms, submitted.
Original matlab code copyright follows:
AUTHOR(s) : Monika Dorfler, Gino Angelo Velasco, Nicki Holighaus, 2010-2011
COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA
http://nuhag.eu/
Permission is granted to modify and re-distribute this
code in any manner as long as this notice is preserved.
All standard disclaimers apply.
"""
if fmax == "nyq":
fmax = fs / 2.
multiscale, shift, window_lens = nsgcwin(fmin, fmax, n_bins, fs,
len(X), gamma)
fbas = fs * np.cumsum(shift[1:]) / len(X)
fbas = fbas[:len(window_lens) // 2 - 1]
bins = window_lens.shape[0] // 2 - 1
window_lens[1:bins + 1] = window_lens[bins + 2]
window_lens[bins + 2:] = window_lens[1:bins + 1][::-1]
norm = 2. * window_lens[:bins + 2] / float(len(X))
norm = np.concatenate((norm, norm[1:-1][::-1]))
multiscale = [norm[ii] * multiscale[ii] for ii in range(2 * (bins + 1))]
c = nsgtf_real(X, multiscale, shift, window_lens)
c_dc = c[0]
c_nyq = c[-1]
c_sub = c[1:-1]
c = np.vstack(c_sub)
return c, c_dc, c_nyq, multiscale, shift, window_lens
def icqt(X_cq, c_dc, c_nyq, multiscale, shift, window_lens):
"""
Inverse constant Q Transform
References
----------
Velasco G. A., Holighaus N., Dorfler M., Grill T.
Constructing an invertible constant-Q transform with nonstationary Gabor
frames, Proceedings of the 14th International Conference on Digital
Audio Effects (DAFx 11), Paris, France, 2011
Holighaus N., Dorfler M., Velasco G. A. and Grill T.
A framework for invertible, real-time constant-Q transforms, submitted.
Original matlab code copyright follows:
AUTHOR(s) : Monika Dorfler, Gino Angelo Velasco, Nicki Holighaus, 2010-2011
COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA
http://nuhag.eu/
Permission is granted to modify and re-distribute this
code in any manner as long as this notice is preserved.
All standard disclaimers apply.
"""
new_multiscale = nsdual(multiscale, shift, window_lens)
X = nsgitf_real(X_cq, c_dc, c_nyq, new_multiscale, shift)
return X
def rolling_mean(X, window_size):
w = 1.0 / window_size * np.ones((window_size))
return np.correlate(X, w, 'valid')
def rolling_window(X, window_size):
# for 1d data
shape = X.shape[:-1] + (X.shape[-1] - window_size + 1, window_size)
strides = X.strides + (X.strides[-1],)
return np.lib.stride_tricks.as_strided(X, shape=shape, strides=strides)
def voiced_unvoiced(X, window_size=256, window_step=128, copy=True):
"""
Voiced unvoiced detection from a raw signal
Based on code from:
https://www.clear.rice.edu/elec532/PROJECTS96/lpc/code.html
Other references:
http://www.seas.ucla.edu/spapl/code/harmfreq_MOLRT_VAD.m
Parameters
----------
X : ndarray
Raw input signal
window_size : int, optional (default=256)
The window size to use, in samples.
window_step : int, optional (default=128)
How far the window steps after each calculation, in samples.
copy : bool, optional (default=True)
Whether to make a copy of the input array or allow in place changes.
"""
X = np.array(X, copy=copy)
if len(X.shape) < 2:
X = X[None]
n_points = X.shape[1]
n_windows = n_points // window_step
# Padding
pad_sizes = [(window_size - window_step) // 2,
window_size - window_step // 2]
# TODO: Handling for odd window sizes / steps
X = np.hstack((np.zeros((X.shape[0], pad_sizes[0])), X,
np.zeros((X.shape[0], pad_sizes[1]))))
clipping_factor = 0.6
b, a = sg.butter(10, np.pi * 9 / 40)
voiced_unvoiced = np.zeros((n_windows, 1))
period = np.zeros((n_windows, 1))
for window in range(max(n_windows - 1, 1)):
XX = X.ravel()[window * window_step + np.arange(window_size)]
XX *= sg.hamming(len(XX))
XX = sg.lfilter(b, a, XX)
left_max = np.max(np.abs(XX[:len(XX) // 3]))
right_max = np.max(np.abs(XX[-len(XX) // 3:]))
clip_value = clipping_factor * np.min([left_max, right_max])
XX_clip = np.clip(XX, clip_value, -clip_value)
XX_corr = np.correlate(XX_clip, XX_clip, mode='full')
center = np.argmax(XX_corr)
right_XX_corr = XX_corr[center:]
prev_window = max([window - 1, 0])
if voiced_unvoiced[prev_window] > 0:
# Want it to be harder to turn off than turn on
strength_factor = .29
else:
strength_factor = .3
start = np.where(right_XX_corr < .3 * XX_corr[center])[0]
# 20 is hardcoded but should depend on samplerate?
try:
start = np.max([20, start[0]])
except IndexError:
start = 20
search_corr = right_XX_corr[start:]
index = np.argmax(search_corr)
second_max = search_corr[index]
if (second_max > strength_factor * XX_corr[center]):
voiced_unvoiced[window] = 1
period[window] = start + index - 1
else:
voiced_unvoiced[window] = 0
period[window] = 0
return np.array(voiced_unvoiced), np.array(period)
def lpc_analysis(X, order=8, window_step=128, window_size=2 * 128,
emphasis=0.9, voiced_start_threshold=.9,
voiced_stop_threshold=.6, truncate=False, copy=True):
"""
Extract LPC coefficients from a signal
Based on code from:
http://labrosa.ee.columbia.edu/matlab/sws/
_rParameters
----------
X : ndarray
Signals to extract LPC coefficients from
order : int, optional (default=8)
Order of the LPC coefficients. For speech, use the general rule that the
order is two times the expected number of formants plus 2.
This can be formulated as 2 + 2 * (fs // 2000). For approx. signals
with fs = 7000, this is 8 coefficients - 2 + 2 * (7000 // 2000).
window_step : int, optional (default=128)
The size (in samples) of the space between each window
window_size : int, optional (default=2 * 128)
The size of each window (in samples) to extract coefficients over
emphasis : float, optional (default=0.9)
The emphasis coefficient to use for filtering
voiced_start_threshold : float, optional (default=0.9)
Upper power threshold for estimating when speech has started
voiced_stop_threshold : float, optional (default=0.6)
Lower power threshold for estimating when speech has stopped
truncate : bool, optional (default=False)
Whether to cut the data at the last window or do zero padding.
copy : bool, optional (default=True)
Whether to copy the input X or modify in place
Returns
-------
lp_coefficients : ndarray
lp coefficients to describe the frame
per_frame_gain : ndarray
calculated gain for each frame
residual_excitation : ndarray
leftover energy which is not described by lp coefficents and gain
voiced_frames : ndarray
array of [0, 1] values which holds voiced/unvoiced decision for each
frame.
References
----------
D. P. W. Ellis (2004), "Sinewave Speech Analysis/Synthesis in Matlab",
Web resource, available: http://www.ee.columbia.edu/ln/labrosa/matlab/sws/
"""
X = np.array(X, copy=copy)
if len(X.shape) < 2:
X = X[None]
n_points = X.shape[1]
n_windows = int(n_points // window_step)
if not truncate:
pad_sizes = [(window_size - window_step) // 2,
window_size - window_step // 2]
# TODO: Handling for odd window sizes / steps
X = np.hstack((np.zeros((X.shape[0], pad_sizes[0])), X,
np.zeros((X.shape[0], pad_sizes[1]))))
else:
pad_sizes = [0, 0]
X = X[0, :n_windows * window_step]
lp_coefficients = np.zeros((n_windows, order + 1))
per_frame_gain = np.zeros((n_windows, 1))
residual_excitation = np.zeros(
((n_windows - 1) * window_step + window_size))
# Pre-emphasis high-pass filter
X = sg.lfilter([1, -emphasis], 1, X)
# stride_tricks.as_strided?
autocorr_X = np.zeros((n_windows, 2 * window_size - 1))
for window in range(max(n_windows - 1, 1)):
wtws = int(window * window_step)
XX = X.ravel()[wtws + np.arange(window_size, dtype="int32")]
WXX = XX * sg.hanning(window_size)
autocorr_X[window] = np.correlate(WXX, WXX, mode='full')
center = np.argmax(autocorr_X[window])
RXX = autocorr_X[window,
np.arange(center, window_size + order, dtype="int32")]
R = linalg.toeplitz(RXX[:-1])
solved_R = linalg.pinv(R).dot(RXX[1:])
filter_coefs = np.hstack((1, -solved_R))
residual_signal = sg.lfilter(filter_coefs, 1, WXX)
gain = np.sqrt(np.mean(residual_signal ** 2))
lp_coefficients[window] = filter_coefs
per_frame_gain[window] = gain
assign_range = wtws + np.arange(window_size, dtype="int32")
residual_excitation[assign_range] += residual_signal / gain
# Throw away first part in overlap mode for proper synthesis
residual_excitation = residual_excitation[pad_sizes[0]:]
return lp_coefficients, per_frame_gain, residual_excitation
def lpc_to_frequency(lp_coefficients, per_frame_gain):
"""
Extract resonant frequencies and magnitudes from LPC coefficients and gains.
Parameters
----------
lp_coefficients : ndarray
LPC coefficients, such as those calculated by ``lpc_analysis``
per_frame_gain : ndarray
Gain calculated for each frame, such as those calculated
by ``lpc_analysis``
Returns
-------
frequencies : ndarray
Resonant frequencies calculated from LPC coefficients and gain. Returned
frequencies are from 0 to 2 * pi
magnitudes : ndarray
Magnitudes of resonant frequencies
References
----------
D. P. W. Ellis (2004), "Sinewave Speech Analysis/Synthesis in Matlab",
Web resource, available: http://www.ee.columbia.edu/ln/labrosa/matlab/sws/
"""
n_windows, order = lp_coefficients.shape
frame_frequencies = np.zeros((n_windows, (order - 1) // 2))
frame_magnitudes = np.zeros_like(frame_frequencies)
for window in range(n_windows):
w_coefs = lp_coefficients[window]
g_coefs = per_frame_gain[window]
roots = np.roots(np.hstack(([1], w_coefs[1:])))
# Roots doesn't return the same thing as MATLAB... agh
frequencies, index = np.unique(
np.abs(np.angle(roots)), return_index=True)
# Make sure 0 doesn't show up...
gtz = np.where(frequencies > 0)[0]
frequencies = frequencies[gtz]
index = index[gtz]
magnitudes = g_coefs / (1. - np.abs(roots))
sort_index = np.argsort(frequencies)
frame_frequencies[window, :len(sort_index)] = frequencies[sort_index]
frame_magnitudes[window, :len(sort_index)] = magnitudes[sort_index]
return frame_frequencies, frame_magnitudes
def lpc_to_lsf(all_lpc):
if len(all_lpc.shape) < 2:
all_lpc = all_lpc[None]
order = all_lpc.shape[1] - 1
all_lsf = np.zeros((len(all_lpc), order))
for i in range(len(all_lpc)):
lpc = all_lpc[i]
lpc1 = np.append(lpc, 0)
lpc2 = lpc1[::-1]
sum_filt = lpc1 + lpc2
diff_filt = lpc1 - lpc2
if order % 2 != 0:
deconv_diff, _ = sg.deconvolve(diff_filt, [1, 0, -1])
deconv_sum = sum_filt
else:
deconv_diff, _ = sg.deconvolve(diff_filt, [1, -1])
deconv_sum, _ = sg.deconvolve(sum_filt, [1, 1])
roots_diff = np.roots(deconv_diff)
roots_sum = np.roots(deconv_sum)
angle_diff = np.angle(roots_diff[::2])
angle_sum = np.angle(roots_sum[::2])
lsf = np.sort(np.hstack((angle_diff, angle_sum)))
if len(lsf) != 0:
all_lsf[i] = lsf
return np.squeeze(all_lsf)
def lsf_to_lpc(all_lsf):
if len(all_lsf.shape) < 2:
all_lsf = all_lsf[None]
order = all_lsf.shape[1]
all_lpc = np.zeros((len(all_lsf), order + 1))
for i in range(len(all_lsf)):
lsf = all_lsf[i]
zeros = np.exp(1j * lsf)
sum_zeros = zeros[::2]
diff_zeros = zeros[1::2]
sum_zeros = np.hstack((sum_zeros, np.conj(sum_zeros)))
diff_zeros = np.hstack((diff_zeros, np.conj(diff_zeros)))
sum_filt = np.poly(sum_zeros)
diff_filt = np.poly(diff_zeros)
if order % 2 != 0:
deconv_diff = sg.convolve(diff_filt, [1, 0, -1])
deconv_sum = sum_filt
else:
deconv_diff = sg.convolve(diff_filt, [1, -1])
deconv_sum = sg.convolve(sum_filt, [1, 1])
lpc = .5 * (deconv_sum + deconv_diff)
# Last coefficient is 0 and not returned
all_lpc[i] = lpc[:-1]
return np.squeeze(all_lpc)
def lpc_synthesis(lp_coefficients, per_frame_gain, residual_excitation=None,
voiced_frames=None, window_step=128, emphasis=0.9):
"""
Synthesize a signal from LPC coefficients
Based on code from:
http://labrosa.ee.columbia.edu/matlab/sws/
http://web.uvic.ca/~tyoon/resource/auditorytoolbox/auditorytoolbox/synlpc.html
Parameters
----------
lp_coefficients : ndarray
Linear prediction coefficients
per_frame_gain : ndarray
Gain coefficients
residual_excitation : ndarray or None, optional (default=None)
Residual excitations. If None, this will be synthesized with white noise
voiced_frames : ndarray or None, optional (default=None)
Voiced frames. If None, all frames assumed to be voiced.
window_step : int, optional (default=128)
The size (in samples) of the space between each window
emphasis : float, optional (default=0.9)
The emphasis coefficient to use for filtering
overlap_add : bool, optional (default=True)
What type of processing to use when joining windows
copy : bool, optional (default=True)
Whether to copy the input X or modify in place
Returns
-------
synthesized : ndarray
Sound vector synthesized from input arguments
References
----------
D. P. W. Ellis (2004), "Sinewave Speech Analysis/Synthesis in Matlab",
Web resource, available: http://www.ee.columbia.edu/ln/labrosa/matlab/sws/
"""
# TODO: Incorporate better synthesis from
# http://eecs.oregonstate.edu/education/docs/ece352/CompleteManual.pdf
window_size = 2 * window_step
[n_windows, order] = lp_coefficients.shape
n_points = (n_windows + 1) * window_step
n_excitation_points = n_points + window_step + window_step // 2
random_state = np.random.RandomState(1999)
if residual_excitation is None:
# Need to generate excitation
if voiced_frames is None:
# No voiced/unvoiced info
voiced_frames = np.ones((lp_coefficients.shape[0], 1))
residual_excitation = np.zeros((n_excitation_points))
f, m = lpc_to_frequency(lp_coefficients, per_frame_gain)
t = np.linspace(0, 1, window_size, endpoint=False)
hanning = sg.hanning(window_size)
for window in range(n_windows):
window_base = window * window_step
index = window_base + np.arange(window_size)
if voiced_frames[window]:
sig = np.zeros_like(t)
cycles = np.cumsum(f[window][0] * t)
sig += sg.sawtooth(cycles, 0.001)
residual_excitation[index] += hanning * sig
residual_excitation[index] += hanning * 0.01 * random_state.randn(
window_size)
else:
n_excitation_points = residual_excitation.shape[0]
n_points = n_excitation_points + window_step + window_step // 2
residual_excitation = np.hstack((residual_excitation,