Skip to content

A performant C# key-value store that keeps keys in-memory and stores values on disk, leveraging Grobuf's speedy serialization power.

License

Notifications You must be signed in to change notification settings

jgric2/Fast-Persistent-Dictionary

Repository files navigation

Fast Persistent Dictionary

Fast Persistent Dictionary, is an implementation of a persistent dictionary in C#. This dictionary-like data structure is designed to persist data to disk, serving as a reliable workhorse for cases where the application requires storing large amounts of data, but also needs to operate with high efficiency and minimize disk space usage.

The dictionary comes with a plethora of features and methods, giving the developer the flexibility to manipulate the data as per their requirements. Some of the key features include options to add or update a record, clear all records, load or save the dictionary, or perform common mathematical operations across the dataset. The dictionary also supports compression to help manage disk usage and provides a GROBUF Serializer for data serialization, facilitating efficient storage of complex objects.

This dictionary makes use of the .NET IEnumerable and ISerializable interfaces, allowing it to be used in various scenarios where these interfaces are required, for example, in .NET collections or serialization operations.

The project also provides exception handling and recovery features. A dispose mechanism is incorporated ensuring that all resources are released when the instance is no longer required, enhancing the project’s stability and resilience.

Fast Persistent Dictionary is an open-source project crafted with care, providing a robust and efficient persistent dictionary in C#. It's an invaluable tool when building applications requiring efficient, reliable, and persistent data storage.

Fast Persistent Dictionary Features

  • Single File Database: the In use database and the saved and loadable format is all compiled in a single file.
  • Performance: Fast Persistent Dictionary supports a high rate of updates and retrieves. Typically surpassing ESENT by a wide margin.
  • Simplicity: a FastPersistentDictionary looks and behaves like the .NET Dictionary class. No extra method calls are required.
  • Concurrency: each data structure can be accessed by multiple threads.
  • Scale: Values can be up to 2gb in size.
  • No Serialization Flags: Any key or value can be used as long as it is serializable by Grobuf.

Benchmarks


BenchmarkDotNet v0.14.0, Windows 11 (10.0.22631.4037/23H2/2023Update/SunValley3)
Intel Core i7-10875H CPU 2.30GHz, 1 CPU, 16 logical and 8 physical cores
.NET SDK 8.0.200
  [Host]     : .NET 8.0.2 (8.0.224.6711), X64 RyuJIT AVX2 [AttachedDebugger]
  Job-URLKUQ : .NET 8.0.2 (8.0.224.6711), X64 RyuJIT AVX2

InvocationCount=1  UnrollFactor=1  

Method N Mean Error StdDev Median
FastPersistentDictionary_Add 10 35.712 μs 1.0418 μs 2.8869 μs 34.700 μs
StandardDictionary_Add 10 4.615 μs 0.0963 μs 0.1350 μs 4.600 μs
EsentPersistentDictionary_Add 10 169.886 μs 5.2269 μs 14.5704 μs 164.950 μs
FastPersistentDictionary_Get 10 29.895 μs 0.9572 μs 2.5550 μs 30.300 μs
StandardDictionary_Get 10 3.429 μs 0.0810 μs 0.2312 μs 3.350 μs
EsentPersistentDictionary_Get 10 49.512 μs 1.2037 μs 3.2544 μs 49.300 μs
FastPersistentDictionary_Remove 10 4.667 μs 0.0940 μs 0.1742 μs 4.700 μs
StandardDictionary_Remove 10 3.397 μs 0.1454 μs 0.3981 μs 3.300 μs
EsentPersistentDictionary_Remove 10 85.437 μs 1.6982 μs 3.5821 μs 85.650 μs
FastPersistentDictionary_Add 100 246.110 μs 4.8914 μs 7.1697 μs 245.000 μs
StandardDictionary_Add 100 20.167 μs 0.3757 μs 0.2934 μs 20.200 μs
EsentPersistentDictionary_Add 100 1,387.178 μs 24.7951 μs 41.4270 μs 1,383.100 μs
FastPersistentDictionary_Get 100 103.832 μs 6.6457 μs 19.1743 μs 107.050 μs
StandardDictionary_Get 100 10.550 μs 0.2117 μs 0.3037 μs 10.500 μs
EsentPersistentDictionary_Get 100 376.640 μs 7.4826 μs 20.4835 μs 375.100 μs
FastPersistentDictionary_Remove 100 17.328 μs 0.4785 μs 1.2689 μs 17.200 μs
StandardDictionary_Remove 100 10.529 μs 0.2106 μs 0.3217 μs 10.600 μs
EsentPersistentDictionary_Remove 100 840.953 μs 16.4776 μs 30.5424 μs 839.100 μs
FastPersistentDictionary_Add 1000 2,308.243 μs 44.5800 μs 53.0693 μs 2,306.800 μs
StandardDictionary_Add 1000 177.095 μs 3.4542 μs 3.9779 μs 175.400 μs
EsentPersistentDictionary_Add 1000 12,976.556 μs 491.4843 μs 1,441.4385 μs 12,218.100 μs
FastPersistentDictionary_Get 1000 790.672 μs 32.5535 μs 94.4435 μs 814.500 μs
StandardDictionary_Get 1000 87.707 μs 1.2218 μs 1.0831 μs 87.500 μs
EsentPersistentDictionary_Get 1000 3,355.380 μs 92.6984 μs 264.4738 μs 3,264.600 μs
FastPersistentDictionary_Remove 1000 200.779 μs 5.6056 μs 16.0834 μs 196.950 μs
StandardDictionary_Remove 1000 106.619 μs 5.9200 μs 15.4915 μs 106.600 μs
EsentPersistentDictionary_Remove 1000 7,758.348 μs 203.6357 μs 580.9842 μs 7,583.750 μs
FastPersistentDictionary_Add 10000 22,342.905 μs 910.8584 μs 2,671.3902 μs 21,158.300 μs
StandardDictionary_Add 10000 1,814.397 μs 120.8519 μs 356.3347 μs 1,636.200 μs
EsentPersistentDictionary_Add 10000 122,277.346 μs 2,166.8262 μs 4,570.5723 μs 122,271.200 μs
FastPersistentDictionary_Get 10000 4,522.615 μs 242.8226 μs 668.8040 μs 4,239.550 μs
StandardDictionary_Get 10000 710.010 μs 50.2010 μs 140.7690 μs 662.100 μs
EsentPersistentDictionary_Get 10000 32,145.620 μs 631.8258 μs 591.0102 μs 31,998.800 μs
FastPersistentDictionary_Remove 10000 876.048 μs 73.5746 μs 215.7816 μs 742.500 μs
StandardDictionary_Remove 10000 869.499 μs 62.9090 μs 184.5012 μs 835.700 μs
EsentPersistentDictionary_Remove 10000 76,566.850 μs 1,515.7748 μs 1,745.5685 μs 76,654.200 μs
FastPersistentDictionary_Add 100000 229,172.487 μs 4,581.7610 μs 5,794.4611 μs 228,866.700 μs
StandardDictionary_Add 100000 32,888.018 μs 1,342.1441 μs 3,696.6548 μs 31,588.850 μs
EsentPersistentDictionary_Add 100000 1,249,948.586 μs 19,460.0175 μs 17,250.7987 μs 1,249,580.750 μs
FastPersistentDictionary_Get 100000 47,154.111 μs 884.0972 μs 1,501.2643 μs 47,125.200 μs
StandardDictionary_Get 100000 13,312.728 μs 287.6890 μs 830.0487 μs 13,184.250 μs
EsentPersistentDictionary_Get 100000 328,134.381 μs 5,873.8948 μs 4,904.9682 μs 328,413.050 μs
FastPersistentDictionary_Remove 100000 8,773.308 μs 175.0641 μs 227.6328 μs 8,712.500 μs
StandardDictionary_Remove 100000 13,193.624 μs 335.9221 μs 979.9007 μs 13,229.400 μs
EsentPersistentDictionary_Remove 100000 803,621.169 μs 15,802.8693 μs 15,520.5307 μs 800,826.950 μs
FastPersistentDictionary_Add 1000000 2,295,026.753 μs 35,852.7067 μs 33,536.6441 μs 2,292,892.900 μs
StandardDictionary_Add 1000000 519,974.638 μs 14,354.2653 μs 41,872.0685 μs 509,290.700 μs
EsentPersistentDictionary_Add 1000000 13,038,880.720 μs 82,744.1640 μs 77,398.9424 μs 13,047,758.000 μs
FastPersistentDictionary_Get 1000000 493,184.675 μs 9,822.8597 μs 11,312.0199 μs 492,070.800 μs
StandardDictionary_Get 1000000 151,635.342 μs 3,024.3169 μs 3,361.5202 μs 152,587.600 μs
EsentPersistentDictionary_Get 1000000 3,279,782.257 μs 55,003.8343 μs 51,450.6208 μs 3,301,896.650 μs
FastPersistentDictionary_Remove 1000000 112,024.419 μs 2,202.4345 μs 3,087.5058 μs 112,387.200 μs
StandardDictionary_Remove 1000000 152,094.443 μs 2,997.1979 μs 4,486.0651 μs 152,306.050 μs
EsentPersistentDictionary_Remove 1000000 8,093,507.270 μs 43,590.9941 μs 40,775.0430 μs 8,090,683.550 μs

Quick Start Demo

Setting up a FastPersistentDictionary is simple and straightforward and matches the implementation of a standard Dictionary in C# as much as possible with various additional extension methods.

int N = 100000;
private FastPersistentDictionary<string, string> fastPersistentDictionary= new FastPersistentDictionary<string, string>(path: fastPersistentDictionary);
//Strings for example but can work with any type.
 for (int i = 0; i < N; i++)
 {
     string key = $"Key{i}";
     string value = $"Value{i}";
     FastPersistentDictionary.Add(key, value); 
 }


 for (int i = 0; i < N; i++)
 {
     string key = $"Key{i}";
     string value;
     bool found = FastPersistentDictionary.TryGetValue(key, out value); 
 }

Table of Contents

Usage

(Back to top)

FastPersistentDictionary

The FastPersistentDictionary is a highly efficient and flexible persistent dictionary for C# that provides a range of dictionary functionalities while ensuring data persistence on disk. Developed by James Grice, this library is designed to be utilized just like any other dictionary, but with the added benefit of persistency and reduced disk space usage.

Installation

To install the FastPersistentDictionary library, you can download it from GitHub and include it in your project.

Quick Start Guide

1. Creating a FastPersistentDictionary

Here's a simple example to create a FastPersistentDictionary:

using FastPersistentDictionary;

var dictionary = new FastPersistentDictionary<string, int>("path/to/your/dictionary/file");

2. Adding Entries

To add entries to the dictionary:

dictionary.Add("key1", 100);
dictionary.Add("key2", 200);

3. Accessing Entries

The FastPersistentDictionary can be accessed like a regular dictionary:

int value = dictionary["key1"];
Console.WriteLine(value);  // Output: 100

4. Updating Entries

Updating existing entries is straightforward:

dictionary["key1"] = 150;

5. Checking Existence of Keys and Values

You can check if a key or a value exists in the dictionary:

bool hasKey = dictionary.ContainsKey("key1");    // true
bool hasValue = dictionary.ContainsValue(200);   // true

6. Removing Entries

Removing entries from the dictionary:

dictionary.Remove("key1");

7. Iterating Over Entries

You can easily iterate over the entries in the dictionary:

foreach (var kvp in dictionary)
{
    Console.WriteLine($"{kvp.Key} : {kvp.Value}");
}

8. Compacting the Database

To minimize the file size on the disk manually, you can compact the database:

dictionary.CompactDatabaseFile();

9. Saving and Loading the Dictionary

You can save the current state of the dictionary to a file:

dictionary.SaveDictionary("path/to/save/file");

And you can load an existing dictionary from a file:

var loadedDictionary = new FastPersistentDictionary<string, int>("path/to/save/file");
loadedDictionary.LoadDictionary("path/to/save/file");

10. Disposing the Dictionary

Make sure to dispose of the dictionary properly when it is no longer needed:

dictionary.Dispose();

Advanced Features

1. Bulk Operations

You can perform bulk-read operations:

var keys = new[] { "key1", "key2" };
var values = dictionary.GetBulk(keys);

2. Mathematical Operations

The FastPersistentDictionary supports mathematical operations:

int min = dictionary.Min();
int sum = dictionary.Sum();
int max = dictionary.Max();
double average = dictionary.Average(kvp => kvp.Value);

3. Query and Filter

Advanced querying, filtering, and extracting subsets of the dictionary:

var subset = dictionary.GetSubset((key, value) => value > 100);

bool any = dictionary.Any(kvp => kvp.Value > 150);
bool all = dictionary.All(kvp => kvp.Value > 50);

4. Importing Other Dictionaries

Import entries from another dictionary:

var anotherDictionary = new Dictionary<string, int>
{
    { "key3", 300 },
    { "key4", 400 }
};
dictionary.Merge(anotherDictionary);

Summary

The FastPersistentDictionary offers a wide range of functionalities for persistent data storage with minimal overhead on disk space. With the ease of use of any other dictionary and options for advanced operations, it is a powerful tool for large datasets and projects in C#.

Contribute

(Back to top)

Your support is invaluable and truly welcomed! Here's how you can contribute:

  • Write Tests and Benchmarks: Enhance code reliability and performance evaluation.
  • Enhance Documentation: Assist others in comprehending and effectively using FastPersistentDictionary.
  • Submit Feature Requests and Bug Reports: Suggest new ideas and report issues to help refine FastPersistentDictionary.
  • Optimize Performance: Offer optimizations and improvements to existing features..

License

(Back to top)

MIT license

About

A performant C# key-value store that keeps keys in-memory and stores values on disk, leveraging Grobuf's speedy serialization power.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages