-
Notifications
You must be signed in to change notification settings - Fork 1
/
dehaze.py.py
307 lines (237 loc) · 12 KB
/
dehaze.py.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import os
import random
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
plt.style.use("ggplot")
%matplotlib inline
from tqdm import tqdm_notebook, tnrange
from itertools import chain
from skimage.io import imread, imshow, concatenate_images
from skimage.transform import resize
from skimage.morphology import label
from sklearn.model_selection import train_test_split
import tensorflow as tf
from keras.models import Model, load_model
from keras.layers import Input, BatchNormalization, Activation, Dense, Dropout
from keras.layers.core import Lambda, RepeatVector, Reshape
from keras.layers.convolutional import Conv2D, Conv2DTranspose
from keras.layers.pooling import MaxPooling2D, GlobalMaxPool2D
from keras.layers.merge import concatenate, add
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
from keras.optimizers import Adam
from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
from keras.applications.vgg16 import VGG16
from keras import backend as K
# Set some parameters
im_width = 160
im_height = 160
border = 5
path_train = 'C:/dataset2/DEHAZE/X/'
path_test = 'C:/dataset2/DEHAZE/y/'
def sobel(x):
weight = tf.Variable(tf.constant([[-1.0,-1.0,-1.0], [0,0,0], [1.0,1.0,1.0],
[-2.0,-2.0,-2.0], [0,0,0], [2.0,2.0,2.0],
[-1.0,-1.0,-1.0], [0,0,0], [1.0,1.0,1.0]],shape = [3, 3, 3, 1]))
frame=tf.nn.conv2d(x, weight, [1,1,1,1], padding='SAME')
return frame
def Laplacian(x):
weight=tf.constant([
[[[-1.,0.,0.],[0.,-1.,0.],[0.,0.,-1.]],[[-1.,0.,0.],[0.,-1.,0.],[0.,0.,-1.]],[[-1.,0.,0.],[0.,-1.,0.],[0.,0.,-1.]]],
[[[-1.,0.,0.],[0.,-1.,0.],[0.,0.,-1.]],[[8.,0.,0.],[0.,8.,0.],[0.,0.,8.]],[[-1.,0.,0.],[0.,-1.,0.],[0.,0.,-1.]]],
[[[-1.,0.,0.],[0.,-1.,0.],[0.,0.,-1.]],[[-1.,0.,0.],[0.,-1.,0.],[0.,0.,-1.]],[[-1.,0.,0.],[0.,-1.,0.],[0.,0.,-1.]]]
])
frame=tf.nn.conv2d(x,weight,[1,1,1,1],padding='SAME')
return frame
# Get and resize train images and masks
def get_data(path,path_test, train=True):
ids = next(os.walk(path))[2]
id_test = next(os.walk(path_test))[2]
X = np.zeros((len(ids), im_height, im_width, 3), dtype=np.float32)
X_half = np.zeros((len(ids), im_height//2, im_width//2, 3), dtype=np.float32)
if train:
y = np.zeros((len(ids), im_height, im_width, 3), dtype=np.float32)
y_half = np.zeros((len(ids), im_height//2, im_width//2, 3), dtype=np.float32)
print('Getting and resizing images ... ')
for n, id_ in tqdm_notebook(enumerate(ids), total=len(ids)):
# Load images
img = load_img(path + id_, grayscale=False)
x_img = img_to_array(img)
x_img = resize(x_img, (im_width, im_height, 3), mode='constant', preserve_range=True)
x_img_half = resize(x_img, (im_width//2, im_height//2, 3), mode='constant', preserve_range=True)
X[n] = x_img/255
X_half[n] = x_img_half/255
for nt, id_test in tqdm_notebook(enumerate(id_test), total=len(id_test)):
for j in range(4):
idx = 4*nt + j
img = load_img(path_test + id_test, grayscale=False)
y_img = img_to_array(img)
y_img = resize(y_img, (im_width, im_height, 3), mode='constant', preserve_range=True)
y_img_half = resize(y_img, (im_width//2, im_height//2, 3), mode='constant', preserve_range=True)
y[idx] = y_img / 255
y_half[idx] = y_img_half / 255
print('Done!')
if train:
return X, X_half, y, y_half
else:
return X, X_half
X, X_half, y, y_half = get_data(path_train, path_test, train=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2, random_state=2018)
X_train_half, X_valid_half, y_train_half, y_valid_half = train_test_split(X_half, y_half, test_size=0.2, random_state=2018)
print(X_train.shape, X_valid.shape)
print(X_train_half.shape, X_valid_half.shape)
#Check if the features and the target match
sel = random.randint(0, len(X_train)-1)
plt.imshow(X_train[sel])
plt.show()
plt.imshow(y_train[sel])
plt.show()
plt.imshow(X_train_half[sel])
plt.show()
plt.imshow(y_train_half[sel])
plt.show()
def conv2d_block(input_tensor, n_filters, kernel_size=3, batchnorm=True):
# first layer
x = Conv2D(filters=n_filters, kernel_size=(kernel_size, kernel_size), kernel_initializer="he_normal",
padding="same")(input_tensor)
if batchnorm:
x = BatchNormalization()(x)
x = Activation("relu")(x)
# second layer
x = Conv2D(filters=n_filters, kernel_size=(kernel_size, kernel_size), kernel_initializer="he_normal",
padding="same")(x)
if batchnorm:
x = BatchNormalization()(x)
x = Activation("relu")(x)
return x
def unet_en(input_img, n_filters=16, dropout=0.3, batchnorm=True):
c1 = conv2d_block(input_img, n_filters=n_filters*1, kernel_size=3, batchnorm=batchnorm)
p1 = MaxPooling2D((2, 2)) (c1)
p1 = Dropout(dropout*0.5)(p1)
c2 = conv2d_block(p1, n_filters=n_filters*2, kernel_size=3, batchnorm=batchnorm)
p2 = MaxPooling2D((2, 2)) (c2)
p2 = Dropout(dropout)(p2)
c3 = conv2d_block(p2, n_filters=n_filters*4, kernel_size=3, batchnorm=batchnorm)
p3 = MaxPooling2D((2, 2)) (c3)
p3 = Dropout(dropout)(p3)
c4 = conv2d_block(p3, n_filters=n_filters*8, kernel_size=3, batchnorm=batchnorm)
p4 = MaxPooling2D((2, 2)) (c4)
p4 = Dropout(dropout)(p4)
c5 = conv2d_block(p4, n_filters=n_filters*16, kernel_size=3, batchnorm=batchnorm)
return [c1, c2, c3, c4, c5]
# expansive path
def unet_dec(input_img, layers, n_filters=16, dropout=0.4, batchnorm=True):
c1, c2, c3, c4, _ = layers
u6 = Conv2DTranspose(n_filters*8, (3, 3), strides=(2, 2), padding='same') (input_img)
u6 = concatenate([u6, c4])
u6 = Dropout(dropout)(u6)
c6 = conv2d_block(u6, n_filters=n_filters*8, kernel_size=3, batchnorm=batchnorm)
u7 = Conv2DTranspose(n_filters*4, (3, 3), strides=(2, 2), padding='same') (c6)
u7 = concatenate([u7, c3])
u7 = Dropout(dropout)(u7)
c7 = conv2d_block(u7, n_filters=n_filters*4, kernel_size=3, batchnorm=batchnorm)
u8 = Conv2DTranspose(n_filters*2, (3, 3), strides=(2, 2), padding='same') (c7)
u8 = concatenate([u8, c2])
u8 = Dropout(dropout)(u8)
c8 = conv2d_block(u8, n_filters=n_filters*2, kernel_size=3, batchnorm=batchnorm)
u9 = Conv2DTranspose(n_filters*1, (3, 3), strides=(2, 2), padding='same') (c8)
u9 = concatenate([u9, c1], axis=3)
u9 = Dropout(dropout)(u9)
c9 = conv2d_block(u9, n_filters=n_filters*1, kernel_size=3, batchnorm=batchnorm)
return c9
def unet_half_en(input_img, n_filters=16, dropout=0.3, batchnorm=True):
# contracting pat
c1 = conv2d_block(input_img, n_filters=n_filters*1, kernel_size=3, batchnorm=batchnorm)
p1 = MaxPooling2D((2, 2)) (c1)
p1 = Dropout(dropout*0.5)(p1)
c2 = conv2d_block(p1, n_filters=n_filters*2, kernel_size=3, batchnorm=batchnorm)
p2 = MaxPooling2D((2, 2)) (c2)
p2 = Dropout(dropout)(p2)
c3 = conv2d_block(p2, n_filters=n_filters*4, kernel_size=3, batchnorm=batchnorm)
p3 = MaxPooling2D((2, 2)) (c3)
p3 = Dropout(dropout)(p3)
c4 = conv2d_block(p3, n_filters=n_filters*16, kernel_size=3, batchnorm=batchnorm)
return [c1, c2, c3, c4]
def unet_half_dec(input_img, n_filters=16, dropout=0.4, batchnorm=True):
c1,c2,c3,x = input_img
u4 = Conv2DTranspose(n_filters*2, (3, 3), strides=(2, 2), padding='same') (x)
u4 = concatenate([u4, c3])
u4 = Dropout(dropout)(u4)
c4 = conv2d_block(u4, n_filters=n_filters*4, kernel_size=3, batchnorm=batchnorm)
u5 = Conv2DTranspose(n_filters*1, (3, 3), strides=(2, 2), padding='same') (c4)
u5 = concatenate([u5, c2], axis=3)
u5 = Dropout(dropout)(u5)
c5 = conv2d_block(u5, n_filters=n_filters*2, kernel_size=3, batchnorm=batchnorm)
u6 = Conv2DTranspose(n_filters*2, (3, 3), strides=(2, 2), padding='same') (c5)
u6 = concatenate([u6, c1])
u6 = Dropout(dropout)(u6)
c6 = conv2d_block(u6, n_filters=n_filters*1, kernel_size=3, batchnorm=batchnorm)
u7 = Conv2DTranspose(n_filters*2, (3, 3), strides=(2, 2), padding='same') (c6)
return u7
def dilated_Conv(en1, en2):
input_img = add([en1, en2])
dilate3 = Conv2D(64,3, activation='relu', padding='same', dilation_rate=4, kernel_initializer='he_normal')(input_img)
b9 = BatchNormalization()(dilate3)
b9 = Dropout(rate=0.2)(b9)
dilate4 = Conv2D(64,3, activation='relu', padding='same', dilation_rate=8, kernel_initializer='he_normal')(b9)
b10 = BatchNormalization()(dilate4)
b10 = Dropout(rate=0.2)(b10)
dilate5 = Conv2D(64,3, activation='relu', padding='same', dilation_rate=16, kernel_initializer='he_normal')(b10)
b11 = BatchNormalization()(dilate5)
b11 = Dropout(rate=0.2)(b11)
dilate6 = Conv2D(64,3, activation='relu', padding='same', dilation_rate=32, kernel_initializer='he_normal')(b11)
return b11
def reconstruct(dec, dec_half):
out = concatenate([dec, dec_half])
out = Conv2D(3, (1, 1), activation='sigmoid')(out)
return out
def loss(img_true, img_pred):
alpha = 1
beta = 0
gamma = 0.05
def perceptual_loss(img_true, img_pred):
image_shape = (128, 128, 3)
vgg = VGG16(include_top=False, weights='imagenet', input_shape=image_shape)
loss_block3 = Model(inputs=vgg.input, outputs=vgg.get_layer('block3_conv3').output)
loss_block3.trainable = False
loss_block2 = Model(inputs=vgg.input, outputs=vgg.get_layer('block2_conv2').output)
loss_block2.trainable = False
loss_block1 = Model(input=vgg.input, outputs = vgg.get_layer('block1_conv2').output)
loss_block1.trainable = False
return K.mean(K.square(loss_block1(img_true) - loss_block1(img_pred))) + 2*K.mean(K.square(loss_block2(img_true)
- loss_block2(img_pred))) + 5*K.mean(K.square(loss_block3(img_true) - loss_block3(img_pred)))
def ssim_loss(y_true, y_pred):
return 1-tf.reduce_mean(tf.image.ssim(y_true, y_pred, 1.0))
def mae(y_true, y_pred):
return tf.keras.losses.mean_absolute_error(y_true, y_pred)
def inference_mse_loss(frame_hr, frame_sr):
content_base_loss = tf.reduce_mean(tf.sqrt((frame_hr - frame_sr) ** 2+(1e-3)**2))
return tf.reduce_mean(content_base_loss)
derain_loss = inference_mse_loss(img_true, img_pred)
x_edge = Laplacian(img_true)
imitation_edge = Laplacian(img_pred)
edge_loss = inference_mse_loss(img_true, img_pred)
train_loss = alpha*derain_loss + beta*edge_loss
return train_loss + gamma*ssim_loss(img_true, img_pred)
def PSNR(y_true, y_pred):
max_pixel = 1.0
return (10.0 * K.log((max_pixel ** 2) / (K.mean(K.square(y_pred - y_true), axis=-1)))) / 2.303
input_img_half = Input((im_height//2, im_width//2, 3), name='img_half')
input_img = Input((im_height, im_width, 3), name='img')
encoding = unet_en(input_img, n_filters=16, dropout=0.05, batchnorm=True)
half_encoding = unet_half_en(input_img_half, n_filters=16, dropout=0.05, batchnorm=True)
bottleneck = dilated_Conv(encoding[-1], half_encoding[-1])
decoding = unet_dec(bottleneck, encoding, n_filters=16, dropout=0.05, batchnorm=True)
half_decoding = unet_half_dec(half_encoding, n_filters=16, dropout=0.05, batchnorm=True)
output = reconstruct(decoding, half_decoding)
model = Model(inputs=[input_img, input_img_half], outputs = [output])
model.compile(optimizer=Adam(), loss=loss, metrics=[PSNR])
model.summary()
#combined_model = Model(inputs=[input_img, input_img_half], outputs=[outputs])
callbacks = [ EarlyStopping(patience=5, verbose=1),
ReduceLROnPlateau(factor=0.1, patience=3, min_lr=0.00001, verbose=1),
ModelCheckpoint('dehze_1st.h5', verbose=1, save_best_only=True, save_weights_only=True) ]
results = model.fit([X_train, X_train_half],
y_train, batch_size=16, epochs=10,
callbacks=callbacks, validation_data=([X_valid, X_valid_half], y_valid), verbose = 1)
model.save('Dehaze_1st.h5')