-
Notifications
You must be signed in to change notification settings - Fork 14
/
frames_as_jpg.py
executable file
·173 lines (138 loc) · 5.2 KB
/
frames_as_jpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
#!/usr/bin/env python3
import os
import argparse
from typing import NamedTuple
import numpy as np
import cv2
cv2.setNumThreads(0)
from tqdm import tqdm
from multiprocessing import Pool
from util.io import load_json
FS_LABEL_DIR = 'data/fs_comp'
TENNIS_LABEL_DIR = 'data/tennis'
class Task(NamedTuple):
video_name: str
video_path: str
out_path: str
min_frame: int
max_frame: int
target_fps: float
max_height: int
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('dataset', choices=['fs', 'tennis'],
help='Dataset to extract frames for.')
parser.add_argument('video_dir', help='Path to the videos')
parser.add_argument('-o', '--out_dir',
help='Path to write frames. Dry run if None.')
parser.add_argument('--max_height', type=int, default=224,
help='Max height of the extracted frames')
parser.add_argument('--parallelism', type=int, default=os.cpu_count() // 4)
return parser.parse_args()
def get_fs_tasks(video_dir, out_dir, max_height):
tasks = []
for split in ['train', 'val', 'test']:
split_file = os.path.join(FS_LABEL_DIR, split + '.json')
labels = load_json(split_file)
for data in labels:
video_name = data['video']
base_video_name, _, start_frame, end_frame = video_name.rsplit(
'_', 3)
start_frame = int(start_frame)
end_frame = int(end_frame)
assert end_frame - start_frame == data['num_frames']
video_out_path = None
if out_dir is not None:
video_out_path = os.path.join(out_dir, video_name)
video_path = os.path.join(video_dir, base_video_name + '.mkv')
tasks.append(Task(
video_name=video_name, video_path=video_path,
out_path=video_out_path,
min_frame=start_frame, max_frame=end_frame,
target_fps=data['fps'], max_height=max_height
))
return tasks
def get_tennis_tasks(video_dir, out_dir, max_height):
video_files = os.listdir(video_dir)
def match_video_file(prefix):
for v in video_files:
if v.startswith(prefix):
return v
else:
raise Exception('Not found: {}'.format(prefix))
tasks = []
for split in ['train', 'val', 'test']:
split_file = os.path.join(TENNIS_LABEL_DIR, split + '.json')
labels = load_json(split_file)
for data in labels:
video_name = data['video']
base_video_name, start_frame, end_frame = video_name.rsplit('_', 2)
start_frame = int(start_frame)
end_frame = int(end_frame)
assert end_frame - start_frame == data['num_frames']
video_out_path = None
if out_dir is not None:
video_out_path = os.path.join(out_dir, video_name)
video_path = os.path.join(
video_dir, match_video_file(base_video_name))
tasks.append(Task(
video_name=video_name, video_path=video_path,
out_path=video_out_path,
min_frame=start_frame, max_frame=end_frame,
target_fps=data['fps'], max_height=max_height
))
return tasks
def extract_frames(task):
vc = cv2.VideoCapture(task.video_path)
fps = vc.get(cv2.CAP_PROP_FPS)
exp_num_frames = int(vc.get(cv2.CAP_PROP_FRAME_COUNT))
w = int(vc.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vc.get(cv2.CAP_PROP_FRAME_HEIGHT))
if task.max_height < h:
oh = task.max_height
ow = int(w / h * task.max_height)
else:
oh, ow = h, w
assert np.isclose(fps, task.target_fps), (fps, task.target_fps)
if task.out_path is not None:
os.makedirs(task.out_path)
vc.set(cv2.CAP_PROP_POS_FRAMES, task.min_frame)
i = 0
while True:
ret, frame = vc.read()
if not ret:
break
if frame.shape[0] != oh:
frame = cv2.resize(frame, (ow, oh))
if task.out_path is not None:
frame_path = os.path.join(task.out_path, '{:06d}.jpg'.format(i))
cv2.imwrite(frame_path, frame)
i += 1
if task.min_frame + i == task.max_frame:
break
vc.release()
assert i == task.max_frame - task.min_frame, \
'Expected {} frames, got {}: {}'.format(
task.max_frame - task.min_frame, i, task.video_name)
def main(dataset, video_dir, out_dir, max_height, parallelism):
if dataset == 'fs':
tasks = get_fs_tasks(video_dir, out_dir, max_height)
elif dataset == 'tennis':
tasks = get_tennis_tasks(video_dir, out_dir, max_height)
else:
raise Exception('Unknown dataset: ' + dataset)
is_dry_run = False
if out_dir is None:
print('No output directory given. Doing a dry run!')
is_dry_run = True
else:
os.makedirs(out_dir)
with Pool(parallelism) as p:
for _ in tqdm(
p.imap_unordered(extract_frames, tasks),
total=len(tasks), desc='Dry run' if is_dry_run else 'Extracting'
):
pass
print('Done!')
if __name__ == '__main__':
main(**vars(get_args()))