-
Notifications
You must be signed in to change notification settings - Fork 0
/
app_sample.py
157 lines (133 loc) · 4.7 KB
/
app_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from pathlib import Path
from typing import List, Dict, Tuple
import matplotlib.colors as mpl_colors
import pandas as pd
import seaborn as sns
import shinyswatch
import shiny.experimental as x
from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
sns.set_theme()
www_dir = Path(__file__).parent.resolve() / "www"
df = pd.read_csv(Path(__file__).parent / "penguins.csv", na_values="NA")
numeric_cols: List[str] = df.select_dtypes(include=["float64"]).columns.tolist()
species: List[str] = df["Species"].unique().tolist()
species.sort()
app_ui = x.ui.page_fillable(
shinyswatch.theme.minty(),
x.ui.layout_sidebar(
x.ui.sidebar(
# Artwork by @allison_horst
ui.input_selectize(
"xvar",
"X variable",
numeric_cols,
selected="Bill Length (mm)",
),
ui.input_selectize(
"yvar",
"Y variable",
numeric_cols,
selected="Bill Depth (mm)",
),
ui.input_checkbox_group(
"species", "Filter by species", species, selected=species
),
ui.hr(),
ui.input_switch("by_species", "Show species", value=True),
ui.input_switch("show_margins", "Show marginal plots", value=True),
),
ui.output_ui("value_boxes"),
x.ui.output_plot("scatter", fill=True),
ui.help_text(
"Artwork by ",
ui.a("@allison_horst", href="https://twitter.com/allison_horst"),
class_="text-end",
),
fill=True,
fillable=True,
),
)
def server(input: Inputs, output: Outputs, session: Session):
@reactive.Calc
def filtered_df() -> pd.DataFrame:
"""Returns a Pandas data frame that includes only the desired rows"""
# This calculation "req"uires that at least one species is selected
req(len(input.species()) > 0)
# Filter the rows so we only include the desired species
return df[df["Species"].isin(input.species())]
@output
@render.plot
def scatter():
"""Generates a plot for Shiny to display to the user"""
# The plotting function to use depends on whether margins are desired
plotfunc = sns.jointplot if input.show_margins() else sns.scatterplot
plotfunc(
data=filtered_df(),
x=input.xvar(),
y=input.yvar(),
palette=palette,
hue="Species" if input.by_species() else None,
hue_order=species,
legend=False,
)
@output
@render.ui
def value_boxes():
df = filtered_df()
def penguin_value_box(title: str, count: int, bgcol: str, showcase_img: str):
return x.ui.value_box(
title,
count,
{"class_": "pt-1 pb-0"},
showcase=x.ui.bind_fill_role(
ui.tags.img(
{"style": "object-fit:contain;"},
src=showcase_img,
),
item=True,
),
theme_color=None,
style=f"background-color: {bgcol};",
height="90px",
full_screen=True,
)
if not input.by_species():
return penguin_value_box(
"Penguins",
len(df.index),
bg_palette["default"],
# Artwork by @allison_horst
showcase_img="penguins.png",
)
value_boxes = [
penguin_value_box(
name,
len(df[df["Species"] == name]),
bg_palette[name],
# Artwork by @allison_horst
showcase_img=f"{name}.png",
)
for name in species
# Only include boxes for _selected_ species
if name in input.species()
]
return x.ui.layout_column_wrap(1 / len(value_boxes), *value_boxes)
# "darkorange", "purple", "cyan4"
colors = [[255, 140, 0], [160, 32, 240], [0, 139, 139]]
colors = [(r / 255.0, g / 255.0, b / 255.0) for r, g, b in colors]
palette: Dict[str, Tuple[float, float, float]] = {
"Adelie": colors[0],
"Chinstrap": colors[1],
"Gentoo": colors[2],
"default": sns.color_palette()[0], # type: ignore
}
bg_palette = {}
# Use `sns.set_style("whitegrid")` to help find approx alpha value
for name, col in palette.items():
# Adjusted n_colors until `axe` accessibility did not complain about color contrast
bg_palette[name] = mpl_colors.to_hex(sns.light_palette(col, n_colors=7)[1]) # type: ignore
app = App(
app_ui,
server,
static_assets=str(www_dir),
)